

DFSMS/MVS Version 1 Release 4 IBM

Program Management

 SC26-4916-03

DFSMS/MVS Version 1 Release 4 IBM

Program Management

 SC26-4916-03

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xvii.

Fourth Edition (September 1997)

This edition is dedicated to the memory of Richard E. (Dick) Lee, who passed away in November
of 1996, before the completion of this release of Program Management.

IN MEMORIAM

Dick was a senior programmer in IBM and
the technical leader of Program Management
for the last decade. He was the chief architect
for the binder, guiding Program Management
through evolutionary changes with significant
innovations in support of the language products,
OS/390, MVS/ESA SP, and DFSMS/MVS. He
cared very much about the customers his product
served, never satisfied until he had met their
requirement or guided them in a direction to
achieve them. Dick is sorely missed by all who
were lucky enough to know him and work with
him, and by IBM, to which he gave 30 plus years
of devoted service.

This edition applies to Version 1 Release 4 of DFSMS/MVS (5695-DF1), Release 4 of OS/390 (5647-A01), and any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments appears at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0000

 U.S.A.

Or you can send your comments electronically to starpubs@vnet.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xvii
Programming Interface Information . xvii
Trademarks . xviii

Summary of Changes . xix
Publication Updates . xix
Fourth Edition, September 1997 . xix

Third Edition, December 1995 . xx
Second Edition, June 1994 . xxi

About This Book . xxiii
Required Product Knowledge . xxiii
Required Publications . xxiii
Related Publications . xxiii
Referenced Publications . xxiv
References to Product Names Used in DFSMS/MVS Publications xxiv
How to Tell if a Book is Current . xxv
Notational Conventions . xxvi

Chapter 1. Introduction . 1
DFSMS/MVS Program Management Components 1

The Program Management Binder . 2
The Program Management Loader . 4
The Linkage Editor . 5
The Batch Loader . 5

Using Utilities for Program Management . 6
Using Service Aids for Program Management . 7

Chapter 2. Creating Programs from Source Modules 9
Combining Modules . 9

Sections . 10
Classes . 10
Common Areas . 11
Parts . 11
Pseudoregisters . 12
Entry Points . 12
External Symbols . 13

Object and Program Module Structure . 14
External Symbol Dictionary . 15
Relocation Dictionary . 16
Text . 16
Identification Data . 16
Module Attributes . 17

Program Management Binder Batch Processing 17
Input and Output . 17
Creating a Program Module . 18

| Program Object Formats . 21
Binding . 21
Creation of an Executable Program in Virtual Storage 22

Addressing and Residence Modes . 22

 Copyright IBM Corp. 1991, 1997 iii

Addressing Mode . 23
Residence Mode . 23
AMODE and RMODE Hierarchy . 24
AMODE and RMODE Combinations . 24
AMODE and RMODE Validation . 24
AMODE and RMODE for Overlay Programs 25

Module Reusability . 25
| Binder Extensions supporting the Language Environment for MVS Prelinker
| Functions . 26

Binder support for DLLs . 27

Chapter 3. Using the Binder Batch Interface 29
Invoking the Binder with JCL . 29

Binder JCL Example . 29
EXEC Statement . 30
DD Statements . 31

Binder Cataloged Procedures . 37
LKED Procedure . 37
LKEDG Procedure . 38

Invoking the Binder from a Program . 39
Invoking the Binder Under TSO . 41

| Invoking the Binder under OpenEdition . 42

Chapter 4. Defining Batch Input to the Binder 43
Defining the Primary Input . 44

Object Modules, Load Modules and Program Objects 44
Control Statements . 45
Modules and Control Statements . 45

Secondary (Included) Input . 46
Including Sequential Data Sets . 48
Including Library Members . 48
Including Concatenated Data Sets . 49

Resolving External References . 50
| Incremental Autocall . 51

Searching the Link Pack Area . 51
| Dynamic Symbol Resolution . 52

Specifying Automatic Call Libraries . 52
Directing External References to a Specific Library 53
NCAL Option: Negating the Automatic Library Call 54

| Renaming . 55

Chapter 5. Editing a Section in Batch Mode 57
Editing Conventions . 57

Entry Points . 58
Placement of Control Statements . 58
Identical Old and New Symbols . 58

Changing External Symbols . 58
Using the CHANGE Statement . 59
Example of Changing External Symbols . 59

Replacing Sections . 60
Automatic Replacement . 60
Using the REPLACE Statement to Replace Sections and Named Common

Areas . 62
Deleting External Symbols . 63

iv DFSMS/MVS V1R4 Program Management

Ordering Sections or Named Common Areas 64
Aligning Sections or Named Common Areas on Page Boundaries 66

Chapter 6. Binder Control Statement Reference 69
Binder Syntax Conventions . 69

Syntax Errors . 71
Rules for Comments . 71
Placement Information . 71

ALIAS Statement . 71
| AUTOCALL Statement . 73

CHANGE Statement . 74
ENTRY Statement . 75
EXPAND Statement . 76
IDENTIFY Statement . 78

| IMPORT Statement . 80
INCLUDE Statement . 82
INSERT Statement . 84
LIBRARY Statement . 85
MODE Statement . 87
NAME Statement . 88
ORDER Statement . 90
OVERLAY Statement . 91
PAGE Statement . 93
RENAME Statement . 94
REPLACE Statement . 95
SETCODE Statement . 97
SETOPT Statement . 98
SETSSI Statement . 98

Chapter 7. Binder Options Reference . 101
Specifying Binder Options . 101
Establishing Installation Defaults . 102
Binder Options . 103

AC: Authorization Code Option . 107
| ALIASES: ALIASES Option . 107

ALIGN2: 2KB Page Alignment Option . 108
AMODE: Addressing Mode Option . 108
CALL: Automatic Library Call Option . 108
CASE: Case Control Option . 109
COMPAT: Binder Level Option . 109
DC: Downward Compatible Option . 111
DCBS Option . 111

| DYNAM: DYNAM Option . 112
EDIT: Editable Option . 112
EP: Entry Point Option . 112
EXITS: Specify Exits to be Taken Option 113
FETCHOPT: Fetching Mode Option . 113
FILL: Fill Character Option . 114
HOBSET: Set High Order Bit Option . 114
LET: Let Execute Option . 115
LINECT: Line Count Option . 115
LIST: Listing Option . 115
MAP: Program Module Map Option . 116
MAXBLK: Maximum Block Size Option . 116

 Contents v

MSGLEVEL: Message Level Option . 117
NAME: NAME Option . 117
OL: Only-Loadable Option . 117
OPTIONS: Options Option . 117
OVLY: Overlay Option . 118

| PATHMODE: Set OpenEdition File Access Attributes for SYSLMOD . . . 118
PRINT: Diagnostic Messages Option . 119
RES: Search Link Pack Area Option . 119
REUS: Reusability Options . 120
RMODE: Residence Mode Option . 121

| SCTR: Scatter Load Option . 122
SIZE: Space Specification Option . 122
SSI: System Status Index Option . 123
STORENX: Store Not-Executable Module 123
TERM: Alternate Output Option . 124
TEST: Test Option . 124

| UPCASE: UPCASE Option . 124
WKSPACE: Working Space Specification Option 125
XCAL: Exclusive Call Option . 126
XREF: Cross Reference Table Option . 126

Chapter 8. Using the Binder Application Programming Interface 127
Understanding Binder Programming Concepts 127

| VERSION Number in an API Call . 130
Binder Dialogs . 130
Processing Intents . 136
Setting Options With the Binder API . 137

Invoking the Binder API . 140
Setting the Invocation Environment . 140
Loading the Binder . 141
Invoking the Binder Using the Macros . 141
Invoking the Binder Without the Macros . 141
Binder API Common Return and Reason Codes 142

Generating and Mapping Data Areas . 144
Using the IEWBUFF Macro . 144
FREEBUF: Free Buffer Storage . 146
GETBUF: Get Buffer Storage . 146
INITBUF: Initialize Buffer Header . 147
MAPBUF: Map Buffer Declaration . 147

Coding the IEWBIND Macro . 149
Defining Varying Character Strings . 149
Defining Section Names . 149
Defining Parameter Lists . 149
Setting Null Values . 150

IEWBIND Function Reference . 150
ADDA: Add Alias . 150
ALIGNT: Align Text . 152
ALTERW: Alter Workmod . 154

| AUTOCALL: Perform Incremental Autocall 157
BINDW: Bind Workmod . 159
CREATEW: Create Workmod . 163
DELETEW: Delete Workmod . 164

| DLLRENAME: Rename DLL modules . 166
ENDD: End Dialog . 168

vi DFSMS/MVS V1R4 Program Management

GETD: Get Data . 170
GETE: Get ESD Data . 172
GETN: Get Names . 176

| IMPORT: Import a Function or External Variable 178
INCLUDE: Include Module . 180
INSERTS: Insert Section . 186
LOADW: Load Workmod . 188
ORDERS: Order Sections . 191
PUTD: Put Data . 192

| RENAME: RENAME Symbolic References 197
RESETW: Reset Workmod . 199
SAVEW: Save Workmod . 201
SETL: Set Library . 205
SETO: Set Option . 208
STARTD: Start Dialog . 210
STARTS: Start Segment . 216

User Exits . 218
Execution Environment . 218
Registers at Entry to the User Exit Routine 218
Message Exit . 219
Save Exit . 219
Interface Validation Exit . 221

Programming Example for the Binder API . 225

Appendix A. Summary of Considerations for the PM User 237
Migrating from the Linkage Editor to the Binder 237

SMP/E Precautions . 237
Storage Considerations Using the Binder 238
Error Handling in the Binder . 238

| Changes and Extensions in Output Using the Binder 239
Binder Control Statements and Options . 239
Binder Processing Differences from the Linkage Editor 240
Other Binder Processing Differences . 242

| Program Objects: Features and Processing Characteristics 243
| Program Object Structure . 243
| Program Objects on DASD Storage . 244
| Residence For and Access to Program Objects 245
| PDSE Program Library Directory Access of Program Objects 245
| Extensions to the PM Loader to Support Program Objects 246
| LLA and Checkpoint/Restart Support for Program Objects 247
| Migrating from Load Modules to Program Objects 247
| What Should be Converted to Program Objects? 247
| Converting Load Modules to Program Objects 248
| Compatibility of Program Object Formats 248
| Utilities, Components and Products that Support Program Objects 249
| Summary of What's New for the PM User in DFSMS/MVS 1.4 250
| The Binder Incorporates LE/370 Prelinker Functions 250
| Support for DLL Modules in Dynamic Link Libraries 252
| Support for C++/Object Oriented Programs 252
| Support for MVS OpenEdition . 252
| Binder Control Statements Added in DFSMS/MVS 1.4 253
| Binder Options added in DFSMS/MVS 1.4 254
| Modified/New APIs supported by the Binder 254
| Extensions to the Program Object to Support DLLs 255

 Contents vii

| Extensions to PDSE Directory Entry to Support DLLs 255
| DESERVices: Extensions to Support DLLs 255
| New External Files Supported in DFSMS/MVS 1.4 256
| Printed Output Extensions in DFSMS/MVS 1.4 256
| Extensions to the Loader to support C Reentrancy and DLLs 256
| OS/390 2.4 Dynamic LPA Support . 257
| Utilities/Services Extensions for DFSMS/MVS 1.4 257
| Migrating FROM the Prelinker and TO DLLs 257
| Migrating from the Prelinker to Binder . 257
| Migration of Applications to DLL Support 258
| Migration of Binder Users to DFSMS/MVS 1.4 259
| Installation Considerations with DFSMS/MVS 1.4 and OS/390 2.4 259

Appendix B. Using the Linkage Editor and Batch Loader 261
Creating Programs from Source Modules . 261

AMODE and RMODE Differences . 261
Invoking the Linkage Editor and Batch Loader 262

Invoking the Linkage Editor and Batch Loader with JCL 262
Invoking the Linkage Editor from a Program 263
Invoking the Batch Loader from a Program 263
Invoking the Linkage Editor and Batch Loader Under TSO 264

Editing a Control Section . 265
Replacing Control Sections . 265
Deleting an External Symbol . 265

Control Statement Reference . 265
Continuing a Statement . 265
ALIAS Statement . 265
CHANGE Statement . 265
ENTRY Statement . 265
EXPAND Statement . 266
IDENTIFY Statement . 266
NAME Statement . 266
ORDER Statement . 266
REPLACE Statement . 266

Processing and Attribute Options Reference 266
Unsupported Binder Options . 267
LIST: Listing Control . 267
MAP and XREF . 267
Reusability . 267
SIZE: Space Specification . 267
Not-Executable Attribute . 268
Incompatible Processing and Attribute Options 268

Linkage Editor Requirements . 268
Virtual Storage Requirements . 268

Batch Loader Requirements . 271
Interpreting Linkage Editor Output . 272

Diagnostic Output . 272
Output Listing Header . 272
Module Disposition Messages . 272
Error/Warning Messages . 273
Sample Diagnostic Output . 274
Optional Output . 275

Interpreting Batch Loader Output . 276

viii DFSMS/MVS V1R4 Program Management

Appendix C. Program Management Return Codes 279
Binder Return Codes . 279

IEWBLINK Return and Reason Codes . 279
Binder API Reason Codes . 280
IEWBLDGO Return Codes . 287

Linkage Editor Return Codes . 288
Batch Loader Return Codes . 288

Appendix D. Interpreting Binder Output . 291
Header . 291
Input Event Log . 291
Program Module Map . 292

Simple Module . 293
| Renamed-Symbol Cross-Reference Table . 297

Cross-Reference Table . 298
| Imported and Exported Symbol Table . 299

Operation Summary . 300
| The Long-Symbol Cross-Reference Table . 303

The Message Summary Report . 304

Appendix E. Designing and Specifying Overlay Programs 305
Design of an Overlay Program . 305

Single Region Overlay Program . 306
Multiple Region Overlay Program . 314

Specification of an Overlay Program . 316
Region Origin . 317
Control Section Positioning . 318
Special Options . 321

Special Considerations . 322
Common Areas . 322
Automatic Replacement . 324
Storage Requirements . 324
Overlay Communication . 325

Appendix F. Using the Transport Utility . 329
Executing IEWTPORT . 329

Defining the Data Sets . 330
Allocating Space for the SYSUTn Data Sets 330
Transporting Selected Members . 330

Sample IEWTPORT Invocations . 331
Convert a Program Object to a Transportable Program 331
Convert an Entire Program Library . 331
Convert a Transportable Program to a Single Program Object 331

Messages, Errors, and Return Codes . 332
Messages and Codes . 332
Errors . 332
Return Codes . 332

Logical Structure of a Transportable File . 333
Mapping Macro IEWTFMT . 334
Header . 334
Trailer . 335
Transportable Program . 335

Appendix G. Object Module Input Conventions and Record Formats . . 341

 Contents ix

Input Conventions . 341
Record Formats . 342

SYM Record . 342
ESD Record . 343
Text Record . 344
RLD Record . 345
END Record . 346

C/370 Extended Object Module . 347
XSD Record Format . 348
Notes . 348

| Appendix H. Linkage Editor Load Module Formats 351
| Input Conventions . 351
| Record Formats . 352

Appendix I. Generalized Object File Format(GOFF) Input Conventions
and Record Formats . 361

Generalized Object File Format (GOFF) . 361
Guidelines and Restrictions . 361
Incompatibilities . 362
Limitations on GOFF Records . 362
Generalized Object File Format Records 363
Conventions . 363
Module Header Record . 366
External Symbol Definition Record . 366
Text Record . 374
Relocation Directory Record . 377
Deferred Element Length Record . 381
End of Module Record, With Optional Entry Point Request 382
Migration from Old Object Formats . 383
Module Header Records . 384
Mapping Object Module ESD Elements to GOFF Format 384
Mapping Object Module XSD Items to GOFF Format 387
Mapping Object Module TXT Items to GOFF Format 387
Mapping Object Module RLD Items to GOFF Format 388
Mapping Object Module END Items to GOFF Format 388
Associated Data (ADATA) Record Types 390
Associated Data (ADATA) Records . 390

Appendix J. Binder API Buffer Formats . 393
Version 1 Buffer Formats . 394

ESD Entry (Version 1) . 395
Binder Identification Data (Version 1) . 397
Language Processor Identification Data (Version 1) 398
User Identification Data (Version 1) . 399
AMASPZAP Identification Data (Version 1) 400
RLD Entry (Version 1) . 401
Internal Symbol Table (Version 1) . 402
Text Data Buffer (Version 1) . 402
Binder Name List (Version 1) . 403
Extent List (Version 1) . 403

Version 2 Buffer Formats . 404
ESD Entry (Version 2) . 405
Binder Identification Data (Version 2) . 408

x DFSMS/MVS V1R4 Program Management

Language Processor Identification Data (Version 2) 409
User Identification Data (Version 2) . 410
AMASPZAP Identification Data (Version 2) 411
RLD Entry (Version 2) . 411
Internal Symbol Table (Version 2) . 413
Text Data Buffer (Version 2) . 413
Binder Name List (Version 2) . 414
Extent List (Version 2) . 415
Module Map (Version 2) . 416

Migration to Version 2 Buffers . 417
Field Correspondence for ESD records . 418
ESD Conversion Notes (and PM1-PM2 differences) 419
Field Correspondence for RLD Records . 423
RLD Conversion Notes (and PM1-PM2 differences) 423

| Version 3 Buffer Formats . 424
| ESD Entry (Version 3) . 424
| RLD Entry (Version 3) . 427
| PARTINIT Entry (Version 3) . 430
| Migration to Version 3 Buffers . 431
| Part Initializers . 431
| ESD Conversion Notes . 431
| RLD Conversion Notes . 431

Appendix K. Data Areas . 433
PDS Directory Entry Format on Entry to STOW 433

Cross Reference . 438
PDS Directory Entry Format Returned by BLDL 439

Cross Reference . 444
PDSE Directory Entry Returned by DESERV 445

Appendix L. IEWBFDA—Fast Data Access 455
Using the Fast Data Access Service . 455
Environment . 455
Operation . 458
Error Handling . 459
Return and Reason Codes . 459
Parameter List . 461

Abbreviations . 463

Glossary . 465

Index . 469

 Contents xi

xii DFSMS/MVS V1R4 Program Management

 Figures

1. Using Program Management Components to Create and Load Programs . 2
2. Preparing Source Modules for Execution and Executing the Program . . 10
3. External Names and External References 14
4. Input and Output for the Binder . 18
5. A Program Object Produced by the Binder 19
6. Use of the External Symbol Dictionary . 22
7. Binder JCL Example . 30
8. Binder DDNAMES . 32
9. SYSLIN Data Set DCB Parameters . 32

10. SYSPRINT and SYSLOUT DCB Parameters 33
| 11. SYSDEFSD DCB Parameters . 36

12. INCLUDE and LIBRARY Control Statements DCB Parameters 36
13. Processing of One INCLUDE Control Statement 47
14. Processing of Nested INCLUDE Control Statements 48
15. Editing a Module . 57
16. Changing an External Reference and an Entry Point 59
17. Automatic Replacement of Sections . 61
18. Replacing a Section with the REPLACE Control Statement 63
19. Deleting a Section . 64
20. Ordering Sections . 66
21. Aligning Sections on Page Boundaries . 67
22. Overlay Structure for INSERT Statement Example 85
23. Example of an Output Module for the ORDER Statement 91
24. Example of an Overlay Structure for the OVERLAY Statement 93
25. Example of an Output Module for the PAGE Statement 94
26. Summary of Processing and Attribute Options 103
27. Data Items . 130
28. IEWBIND Function Call Summary . 133
29. Processing Intent and Calls . 137
30. Setting Options With the Binder API . 138
31. Common Binder API Reason Codes . 143
32. IEWBUFF Function Summary . 145
33. ADDA Parameter List . 152
34. ALIGNT Parameter List . 153
35. ALTERW Parameter List . 157

| 36. AUTOCall Parameter List . 159
37. BINDW Parameter List . 162
38. CREATEW Parameter List . 164
39. DELETEW Parameter List . 166

| 40. Rename list . 167
| 41. DLLRename Parameter List . 168

42. ENDD Parameter List . 170
43. GETD Parameter List . 172
44. GETE Parameter List . 176
45. GETN Parameter List . 178

| 46. IMPORT Parameter List . 180
47. INCLUDE Parameter List . 186
48. INSERTS Parameter List . 188
49. LOADW Parameter List . 190
50. ORDERS Parameter List . 192

 Copyright IBM Corp. 1991, 1997 xiii

51. PUTD Parameter List . 197
| 52. RENAME Parameter List . 198

53. RESETW Parameter List . 200
54. SAVEW Parameter List . 205
55. SETL Parameter List . 207
56. SETO Parameter List . 210
57. Binder List Structure . 212

| 58. SYSLIB Data Set DCB Parameters . 213
| 59. SYSPRINT DCB Parameters . 214
| 60. SYSTERM DCB Parameters . 214

61. STARTD Parameter List . 216
62. STARTS Parameter List . 218

| 63. Sample Binder Application Programming Interface Program 228
| 64. Invoking the Prelinker . 251
| 65. Prelinker Elimination . 253

66. Incompatible Processing and Attribute Options 268
67. Linkage Editor Capacities for Minimal SIZE Values (96KB, 6KB) 269
68. Batch Loader Virtual Storage Requirements 271
69. Diagnostic Messages Issued by the Linkage Editor 274
70. Linkage Editor Module Map and Cross-Reference Table 276
71. Batch Loader Module Map . 278
72. IEWBLINK Return Codes . 279
73. Binder API Common Reason Codes . 280
74. IEWBLDGO Return Codes . 287
75. Linkage Editor Return Codes . 288
76. Batch Loader Return Codes . 288
77. Sample Binder Input Event Log . 292
78. Sample Binder Module Map . 294
79. Sample Binder Module Map - Overlay 296

| 80. Sample Binder Renamed-Symbol Cross-Reference 298
81. Sample Binder Cross-reference Table 299

| 82. Sample Binder Imported and Exported Symbols Table 300
83. Sample Binder Save Operation Summary 302
84. Sample Binder Load Operation Summary 303

| 85. Sample Binder Long-Symbol Cross-Reference Table 303
86. Control Section Dependencies . 307
87. Single-Region Overlay Tree Structure 308
88. Length of an Overlay Module . 309
89. Segment Origin and Use of Storage . 310
90. Inclusive and Exclusive Segments . 310
91. Inclusive and Exclusive References . 311
92. Location of Segment and Entry Tables in an Overlay Module 313
93. Control Sections Used by Several Paths 314
94. Overlay Tree for Multiple-Region Program 315
95. Symbolic Segment Origin in Single-Region Program 317
96. Symbolic Segment and Region Origin in Multiple-Region Program . . . 318
97. Common Areas Before Processing . 323
98. Common Areas After Processing . 324
99. Branch Sequences for Overlay Programs 326
100. Use of the SEGLD Macro Instruction . 327
101. Use of the SEGWT Macro Instruction . 328
102. IEWTPORT Return Codes . 332
103. Transportable File Structure . 333
104. Transportable Program Record . 334

xiv DFSMS/MVS V1R4 Program Management

105. Transportable File Header . 334
106. Transportable File Trailer . 335
107. Transportable Program Structure . 335
108. Transportable Program Descriptor Map 336
109. Transportable Program Body Structure 336
110. Alias Data Record . 337
111. Transportable Program Alias Data Header 337
112. Attributes Data Record . 338
113. Transportable Program Attributes Data Header 339
114. Item Data Record . 340
115. Transportable Program Item Data Header 340
116. SYM Input Record . 342
117. ESD Input Record . 343
118. Text Input Record . 344
119. RLD Input Record . 345
120. END Input Record—Type 1 . 346
121. END Input Record—Type 2 . 346
122. IDR Data in an Object Module END Record 347

| 123. IDR Data in an Object Module End Record 353
| 124. SYM Record (Load Module) . 353
| 125. CESD Record (Load Module) . 354
| 126. Scatter/Translation Record . 355
| 127. Control Record (Load Module) . 356
| 128. Relocation Dictionary Record (Load Module) 357
| 129. Control and Relocation Dictionary Record (Load Module) 358
| 130. Record Format of Load Module IDRs . 358

131. GOFF Record Type-Identification Prefix Byte 365
132. Module Header Record . 366
133. External Symbol Definition Record . 366
134. External Symbol Definition Continuation Record 368
135. Relationship of an Element's ESDIDs and Parent ESDIDs 368
136. Specifiable External Symbol Definition Record Items 369
137. External Symbol Definition Behavioral Attributes 370
138. Specifiable External Symbol Behavioral Attributes 374
139. Text Record . 375
140. Text Continuation Record . 376
141. Identification Data Element Field . 376
142. IDR Data Element . 376
143. Text Encoding Types . 377
144. Relocation Directory Record . 377
145. Relocation Directory Data Element . 378
146. Relocation Directory Continuation Record 378
147. Relocation Directory Data Element Flags Field 379
148. RLD-Element Referent and Reference Types 380
149. Deferred Section-Length Record . 381
150. Deferred Element Length Data Item . 381
151. End-of-Module Record, with Optional Entry Point Request 382
152. End-of-Module (Entry Point Name) Continuation Record 383
153. Mapping OBJ ESD SD Items to GOFF Format 384
154. OBJ Treatment of ESD PC Items and Blank Names 385
155. Mapping OBJ ESD LD Items to GOFF Format 386
156. Mapping OBJ ESD ER/WX Items to GOFF Format 386
157. Mapping OBJ ESD PR items to GOFF Format 387
158. Mapping OBJ TXT Items to GOFF Format 388

 Figures xv

159. Mapping OBJ RLD Items to GOFF Format 388
160. Mapping OBJ END IDR Items to GOFF Format 389
161. Mapping OBJ END Section Length Items to GOFF Format 389
162. Mapping OBJ END-Entry Items to GOFF Format 389
163. Associated Data (ADATA) Record Type Assignments 390
164. Version 1 buffer formats . 394
165. Format for ESD Entries . 395
166. Format for Binder Identification Data . 397
167. Format for Language Processor Identification Data 398
168. Format for User Identification Data . 399
169. Format for AMASPZAP Identification Data 400
170. Format for RLD Entries . 401
171. Format for Symbol Table (SYM) entries 402
172. Format for TXT Entries . 402
173. Format for Binder Name List Entries . 403
174. Format for Contents Extent List Entries 403
175. Version 2 buffer formats . 404
176. Format for ESD Entries . 405
177. Format for Binder Identification Data . 408
178. Format for Language Processor Identification Data 409
179. Format for User Identification Data . 410
180. Format for AMASPZAP Identification Data 411
181. Format for RLD Entries . 411
182. Format for Symbol Table (SYM) entries 413
183. Format for TXT Entries . 413
184. Format for Binder Name List Entries . 414
185. Format for Contents Extent List Entries 415
186. Format for Module Map List Entries . 416
187. Comparison of new and old ESD formats 418
188. ESD element usage . 422
189. Comparison of new and old RLD formats 423

| 190. Format for ESD Entries . 425
| 191. Format for RLD Entries . 427
| 192. Format for PARTINIT Entries . 430

193. SMDE Format . 445
194. Directory Entry Name Section . 446
195. Directory Entry Notelist Section (PDS Only) 446
196. Directory Entry Token Section . 447

| 197. OpenEdition File Descriptor Section . 447
198. Directory Entry Primary Name Section 447
199. Directory Entry Name Section . 448
200. LSLoader Attributes Unique to Program Objects 450
201. Attributes Unique to Load Modules (PDS only) 452
202. Alias in Unformatted Form . 452
203. IEWBFDA Parameter List . 461

xvi DFSMS/MVS V1R4 Program Management

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any func-
tionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, programs, or services, except those expressly designated by IBM,
are the responsibility of the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Corporation, Information Enabling
Requests, Dept. DWZ, 5600 Cottle Road, San Jose, CA 95193. Such information
may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, 208 Harbor Drive, Stamford, CN 06904, U.S.A.

Programming Interface Information
This book is intended to help you to manage programs using the program manage-
ment binder, program management loader, the linkage editor, the batch loader, and
the transport utility.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by DFSMS/MVS.

General-use programming interfaces allow the customer to write programs that
obtain the services of DFSMS/MVS.

General-use Programming Interface and Associated Guidance Information is identi-
fied where it occurs, either by an introductory statement to a chapter or section or
by the following marking:

General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

 Copyright IBM Corp. 1991, 1997 xvii

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

BookManager
C/370
COBOL/370
DFSMS/MVS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMSrmm
IBM

Language Environment
MVS
MVS/DFP
OpenEdition
OS/2
OS/390
RACF
System/370
System/390

xviii DFSMS/MVS V1R4 Program Management

Summary of Changes

This section no longer includes the product highlights. For similar information,
please see these books:

� DFSMS/MVS Planning for Installation, SC26-4919. This book describes each
functional enhancement and its requirements for implementation.

� DFSMS/MVS General Information, GC26-4900, “What's New in Version 1
Release 4” provides an overview of each enhancement.

 Publication Updates
The following sections describe the publication updates to this book.

Fourth Edition, September 1997
This publication is a major revision in support of the functional changes introduced
with DFSMS/MVS Version 1 Release 4. This book was last published September,
1996, in softcopy only. Vertical lines to the left of the text and illustrations indicate
technical changes or additions since the September softcopy version.

The basic functions of the binder were not modified in this release (PM3). That is,
the binder will bind sections to create modules and save them in libraries or
prepare them for immediate execution. In addition the binder API will continue to
provide support for calling programs to access data and to construct, bind, or copy
modules.

This release addresses some current problems in the support of the C and C++

programming languages. It simplifies the creation of an executable module and
extends support for OpenEdition. Specifically, this release includes:

� A conversion function has been added to the binder to process XOBJ struc-
tures built by the C/C++ compilers. The output from the binder on this path is a
program object which must be stored in a PDSE. This removes the need for
the LE/370 prelinker in those cases where a PDSE is specified as the target
load library (i.e. SYSLMOD).

� The binder and loader have been enhanced to support OS/390 dynamic linking
and DLLs (dynamic load libraries). This provides for user-controlled special
handling of external references in modules, to allow their resolution when
loading the referenced module explicitly or at the time the module is refer-
enced, i.e. it supports forms of dynamic loading.

� Support for the two above enhancements have also been included in
OpenEdition and the C89 shell command.

� The loader was enhanced to support DLLs and deferred loading, as well as the
OS/390 release 4 dynamic LPA functions, extending this support to PDSEs and
all program objects, including DLLs.

Note: Refer to OS/390 C/C++ Programming Guide for more information on the
building and use of DLL modules and dynamic link libraries.

� The new functions, AUTOCALL, DLLRENAME, IMPORT, and RENAME have
been added to the binder API functions. AUTOCALL is used to perform imme-

 Copyright IBM Corp. 1991, 1997 xix

diate autocall, using the given library name as the CALLIB. DLLRENAME is
used to allow the current C/C++ DLLRNAME utility to be extended to support
DLLs built by the binder. IMPORT describes a function or external variable to
be imported and the library member where it can be found. RENAME is used
to rename symbolic references.

� The pathname parameter has been added to the INCLUDE and SETL functions
to allow OpenEdition files to be specified.

� Appendix A, “Summary of Considerations for the PM User” on page 237, has
been significantly extended. This section contains linkage editor load module
formats.

� Appendix H, “Linkage Editor Load Module Formats” on page 351, has been
added. This section contains Linkage Editor load module formats.

This revision also includes maintenance and editorial changes.

Third Edition, December 1995
This publication is a major revision in support of the functional changes introduced
with DFSMS Version 1 Release 3. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change. For a book that
has been updated in softcopy only, the vertical lines indicate changes made since
the last printed version.

This revision also includes maintenance and editorial changes.

The following summarizes the changes to that information.

� Appendix I, “Generalized Object File Format(GOFF) Input Conventions and
Record Formats” on page 361 has been added.

� Appendix L, “IEWBFDA—Fast Data Access” on page 455 has been added.

� “C/370 Extended Object Module” on page 347 has been added to Appendix G,
“Object Module Input Conventions and Record Formats” on page 341.

� “PDSE Directory Entry Returned by DESERV” on page 445 has been added to
Appendix K, “Data Areas” on page 433

Service Update to Version 1 Release 3, June 1996
Appendix J, “Binder API Buffer Formats” on page 393 has had information added
which describes the Version 1 and Version 2 buffer formats. You can select the
buffer format you require based on the level of the program management binder
you are using. See the appendix for more information.

The binder option, PATHMODE, has been added. PATHMODE allows you to over-
ride the permission bits set by the PATHMODE parameter in the JCL for
SYSLMOD. See “PATHMODE: Set OpenEdition File Access Attributes for
SYSLMOD” on page 118 for a description of this option.

The binder option, EXITS, has been added. EXITS allows you to select the user
exits to be entered during binder processing. See “EXITS: Specify Exits to be
Taken Option” on page 113 for information on the EXIT binder option and “User
Exits” on page 218 for information on user exits.

xx DFSMS/MVS V1R4 Program Management

The interface validation exit (INTFVAL) exit allows your exit routine to perform
audits such as examining parameter passing convention. See “Interface Validation
Exit” on page 221 for more information.

Service Update to Version 1 Release 3, September 1996
Service updates have been added.

Second Edition, June 1994
This publication is a major revision in support of the functional changes introduced
with DFSMS Version 1 Release 2.

This revision also includes maintenance and editorial changes.

The following summarizes the changes to that information.

Information has been added to support OpenEdition (OpenEdition file system) data
sets for OpenEdition

Information has been included to support the IEWBIND PUTD function. PUTD is
used to store data into a new or existing workmod item. See “PUTD: Put Data” on
page 192 for more information.

A new appendix, Appendix A, “Summary of Considerations for the PM User” on
page 237 has been added. This appendix discusses using the binder and compat-
ibility between the binder and the linkage editor.

 Summary of Changes xxi

xxii DFSMS/MVS V1R4 Program Management

About This Book

This book is intended to help you learn about and use the program management
functions provided by DFSMS/MVS. DFSMS/MVS works in conjunction with MVS
to manage programs, performing the steps necessary to create and execute pro-
grams on the system. These functions are performed by various DFSMS/MVS
program management components, including the program management binder, the
program management loader, the linkage editor, the batch loader, and the transport
utility.

� Chapters 1 through 5 of this book provide an overview of linking and editing
and are recommended reading for all users.

� Chapters 6 and 7 provide reference material for the binder control statements
and options which give you more control over the binding process.

� Chapter 8 is directed to the programmer who is invoking specific binding func-
tions from another program.

� Appendix A provides a discussion of differences between the binder, linkage
editor, and batch loader. This section also discusses the following information:

� Changes in externals

� New enhancements for this release

� Migration and compatibility considerations

� Prelinker replacement function.

Required Product Knowledge
To use this book effectively, you should be familiar with MVS job control language.

 Required Publications
You should be familiar with the information presented in the following publications:

Publication Title Order Number

OS/390 MVS JCL Reference GC28-1757

OS/390 MVS JCL User's Guide GC28-1758

 Related Publications
The following publications might be helpful:

Publication Title Order Number

DFSMS/MVS Version 1 Release 4 DFSMSdfp Storage Administration
Reference

SC26-4920

DFSMS/MVS Version 1 Release 4 Using Data Sets SC26-4922

DFSMS/MVS Version 1 Release 4 DFSMSdfp Diagnosis Reference LY27-9606

 Copyright IBM Corp. 1991, 1997 xxiii

Publication Title Order Number

High Level Assembler for MVS & VM & VSE Programmer's Guide,
MVS & VM Edition

SC26-4941

High Level Assembler for MVS & VM & VSE Language Reference,
MVS & VM Edition

SC26-4940

 Referenced Publications
Within the text, references are made to other DFSMS/MVS books and books for
related products. The full titles and order numbers are listed in the following table:

Short Title Publication Title Order Number

DFSMS/MVS Planning
for Installation

DFSMS/MVS Version 1 Release 4 Planning
for Installation

SC26-4919

DFSMS/MVS Utilities DFSMS/MVS Version 1 Release 3 Utilities SC26-4926

OS/390 MVS Assem-
bler Services Guide

OS/390 MVS Programming: Assembler Ser-
vices Guide

GC28-1762

OS/390 MVS Auth
Assembler Services
Guide

OS/390 MVS Programming: Authorized
Assembler Services Guide

GC28-1763

OS/390 MVS Diag-
nosis: Tools and
Service Aids

OS/390 MVS Diagnosis: Tools and Service
Aids

SY28-1085

OS/390 MVS JCL
User's Guide

OS/390 MVS JCL User's Guide GC28-1758

OS/390 MVS System
Messages, Vol 4
(IEC-IFD)

OS/390 MVS System Messages, Volume 4
(IEC-IFD)

GC28-1787

OS/390 C/C++ Pro-
gramming Guide

OS/390 C/C++ Programming Guide SC09-2362

OS/390 C/C++ User’s
Guide

OS/390 C/C++ User’s Guide SC09-2361

OS/390 OpenEdition
Command Reference

OS/390 OpenEdition Command Reference SC28-1892

References to Product Names Used in DFSMS/MVS Publications
DFSMS/MVS publications support DFSMS/MVS, 5695-DF1, as well as the
DFSMSdfp base element and the DFSMShsm, DFSMSdss, and DFSMSrmm fea-
tures of OS/390, 5647-A01. This section explains the conventions used in our
library when referencing these product names:

MVS refers to:

� MVS/ESA SP Version 5, 5695-047 or 5695-048
� The MVS base control program (BCP) of OS/390, 5647-A01.

When a particular product is required, the reference includes the complete name.
For more information about OS/390 elements and features, including their relation-

xxiv DFSMS/MVS V1R4 Program Management

ship to MVS/ESA SP and related products, please refer to OS/390 Release 4 Plan-
ning for Installation, GC28-1726.

All MVS book titles refer to the OS/390 editions. Users of MVS/ESA SP Version 5,
should use the corresponding MVS/ESA book. Refer to the OS/390 Information
Roadmap, GC28-1727, for titles and order numbers for all the elements and fea-
tures of OS/390.

RACF refers to:

� Resource Access Control Facility (RACF), Version 2, 5695-039
� The RACF element of the OS/390 Security Server, an optional feature of

OS/390.

When a particular product is required, the reference includes the complete name.

All RACF book titles refer to the Security Server editions. Users of RACF Version
2 should use the corresponding book for their level of the product.

Refer to OS/390 Security Server (RACF) Introduction, GC28-1912, for more infor-
mation about the Security Server.

How to Tell if a Book is Current
IBM regularly updates its books with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a book are iden-
tical, but subsequent updates may be available in softcopy before they are avail-
able in hardcopy. Here's how to determine the level of a book:

� Check the book's order number suffix (often referred to as the dash level). A
book with a higher dash level is more current than one with a lower dash level.
For example, in the publication order number SC26-4930-02, the dash level 02
means that the book is more current than previous levels, such as 01 or 00.
Suffix numbers are updated as a product moves from release to release, as
well as for hardcopy updates within a given release.

� Check to see if you are using the latest softcopy version. To do this, compare
the last two characters of the book's file name (also called the book name).
The higher the number, the more recent the book. For example, DGT1U302 is
more recent than DGT1U301.

� Compare the dates of the hardcopy and softcopy versions of the books. Even
if the hardcopy and softcopy versions of the book have the same dash level,
the softcopy may be more current. This will not be apparent from looking at
the edition notice. The edition notice number and date remain that of the last
hardcopy version. When you are looking at the softcopy product bookshelf,
check the date shown to the right of the book title. This will be the date that
the softcopy version was created.

Also, an asterisk (*) is added next to the new and changed book titles in the
CD-ROM booklet and the README files.

Vertical lines to the left of the text indicate changes or additions to the text and
illustrations. For a book that has been updated in softcopy only, the vertical lines
indicate changes made since the last printed version.

 About This Book xxv

 Notational Conventions
A uniform notation describes the syntax of the control statements documented in
this publication. This notation is not part of the language; it is merely a way of
describing the syntax of the statements. The statement syntax definitions in this
book use the following conventions:

[] Brackets enclose an optional entry. You may, but need not, include the
entry. Examples are:

 [length]
 [MF=E]

| An OR sign (a vertical bar) separates alternative entries. You must
specify one, and only one, of the entries unless you allow an indicated
default. Examples are:

 [REREAD|LEAVE]
 [length|'S']

{ } Braces enclose alternative entries. You must use one, and only one, of
the entries. Examples are:

 BFTEK={S|A}
 {K|D}
 {address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces.
An example is:

In the preceding example, you must choose only one entry from the ver-
tical stack.

. . . An ellipsis indicates that the entry immediately preceding the ellipsis
may be repeated. For example:

(dcbaddr,[(options)],. . .)

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the
next parameter.

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as
shown. These entries consist of keywords and the following punctuation
symbols: commas, parentheses, and equal signs. Examples are:

CLOSE , , , ,TYPE=T
 MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you
do not specify any of the alternatives. Examples are:

 [EROPT={ACC|SKP|ABE }]
 [BFALN={F|D }]

MACRF={{(R[C|P])}
{(W[C|P|L])}
{(R[C],W[C])}}

xxvi DFSMS/MVS V1R4 Program Management

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user,
usually according to specifications and limits described for each param-
eter. Examples are:

 number
 image-id
 count

REQUIRED KEYWORDS AND SYMBOLS
Entries shown IN THE FORMAT SHOWN HERE (notice the type of
highlighting just used) must be coded exactly as shown. These entries
consist of keywords and the following punctuation symbols: commas,
parentheses, and equal signs. Examples are:

CLOSE , , , ,TYPE=T
 MACRF=(PL,PTC)

Note: The format (the type of highlighting) used to identify this type of
entry depends on the display device used to view a soft copy book. The
published hard copy version of this book displays this type of entry in
uppercase boldface type.

DEFAULT VALUES
Values shown IN THE FORMAT SHOWN HERE (notice the type of
highlighting just used) indicate the default used if you do not specify any
of the alternatives. Examples are:

 [EROPT={ACC|SKP|ABE }]
 [BFALN={F|D }]

Note: The format (the type of highlighting) used to identify this type of
entry depends on the display device used to view a soft-copy book. The
published hard copy version of this book displays this type of entry in
underscored uppercase boldface type.

User Specified Value
Values shown in the format shown here (notice the type of highlighting
just used) indicate a value to be supplied by you, the user, usually
according to specifications and limits described for each parameter.
Examples are:

 number
 image-id
 count

 About This Book xxvii

xxviii DFSMS/MVS V1R4 Program Management

 Introduction

 Chapter 1. Introduction

DFSMS/MVS provides program management services to create, load, modify, list,
read, transport, and copy executable programs. DFSMS/MVS introduces the
program management binder and the program management loader. The binder
extends the services formerly provided by the MVS/DFP linkage editor and batch
loader. These enhancements include support for an executable unit called a
program object, which includes all the functions of a load module, with additional
functional and usability improvements. The loader adds to the capabilities of
program fetch and can load both program objects and load modules into storage for
execution. DFSMS/MVS also introduces the transport utility. Using the transport
utility, program objects can be converted to a form understood by other programs.
The Fast Data Access API permits utility programs to quickly extract module data
from program objects.

| Many restrictions inherent in the linkage editor and the format of load modules and
| PDS directory entries are removed or relaxed in DFSMS/MVS. Program objects
| support programs up to 1GB, and can be subdivided into segments which can be

loaded into non-contiguous storage. External names, such as aliases, entry points,
and external references, can be up to 1024 bytes. (However, member names in

| PDS and PDSE directories or in JCL or in system macros are still limited to eight
| bytes.) Program objects support different classes of data associated with the
| module. PDSE directory entries are extended to contain additional information as
| well.

This release of DFSMS/MVS continues to support the linkage editor and batch
loader programs to assist you in converting to the program management binder.
Subsequent releases of DFSMS/MVS, however, might not support these compo-
nents, so we strongly recommend conversion to exclusive use of the binder.

This chapter contains an overview of the services provided by each program man-
agement component and describes some of the enhancements the program man-
agement binder and loader provide over the linkage editor, batch loader and
program fetch. It also lists other DFSMS/MVS and MVS programs that support
program management tasks.

DFSMS/MVS Program Management Components
Although program management components provide many services, they are used
primarily to convert object modules into executable programs, store them in
program libraries, and load them into virtual storage for execution.

You can use the program management binder and loader to perform these tasks.
These components can also be used in conjunction with the linkage editor. A load
module produced by the linkage editor can be accepted as input by the binder or
can be loaded into storage for execution by the program management loader. The
linkage editor can also process load modules produced by the binder.

Figure 1 on page 2 shows how the program management components work
together and how each one is used to prepare an executable program.

 Copyright IBM Corp. 1991, 1997 1

 Introduction

Figure 1. Using Program Management Components to Create and Load Programs. The
program management binder provides all the services previously provided by the linkage
editor and batch loader.

The Program Management Binder
The binder converts the output of language translators and compilers into an exe-
cutable program unit that can either be read directly into virtual storage for exe-
cution or stored in a program library.

Binding Program Modules
You can use the binder to:

� Convert object or load modules, or program objects, into a program object and
store the program object in a partitioned data set extended (PDSE) program
library or OpenEdition. OpenEdition file system is a collection of files used by
OpenEdition file.

� Convert object or load modules, or program objects, into a load module and
store the load module in a partitioned data set (PDS) program library. This is
equivalent to what the linkage editor can do with object and load modules.

2 DFSMS/MVS V1R4 Program Management

 Introduction

� Convert object or load modules, or program objects, into an executable
program in virtual storage and execute the program. This is equivalent to what
the batch loader can do with object and load modules.

The binder processes object modules, load modules and program objects, link-
editing or binding multiple modules into a single load module or program object.
Control statements specify how to combine the input into one or more load modules
or program objects with contiguous virtual storage addresses. Each object module
can be processed separately by the binder, so that only the modules that have
been modified need to be recompiled or reassembled. The binder can create pro-
grams in both the 24- and 31-bit addressing ranges. The binder can also create
overlay load modules or program objects (see Appendix E, “Designing and Speci-
fying Overlay Programs” on page 305). Programs can be stored in program
libraries and later brought into virtual storage by the loader.

The binder can also combine basic linking and loading services into a single job
step. It can read object modules, load modules and program objects from program
libraries into virtual storage, relocate the address constants, and pass control
directly to the program upon completion. When invoked in this way, the binder
does not store any of its output in program libraries after preparing it for execution.
Like the batch loader, you can use the binder for high-performance loading of
modules that do not need to be stored in a program library.

Enhancements to the Program Management Binder
The binder also provides the following enhancements compared to the linkage
editor:

� Support for single and multi-part program objects
� Support for a new object module format (GOFF)
� Easing or elimination of many linkage editor restrictions
� Application programming interface for binding programs

 � Increased usability

| Program Objects: Depending on the library type specified by SYSLMOD, the
| binder creates either program objects or load modules. Program objects include

and extend the functions of load modules. They are stored in partitioned data set
extended (PDSE) program libraries or OpenEdition files instead of partitioned data
set program libraries and have fewer restrictions than load modules. For example,
a program object can have a text size of up to 1 gigabyte, whereas the text size of
a load module is limited to 16 MB. The block size of a program object is also fixed,
eliminating the need to reblock when you copy programs between devices. You
can use IEBCOPY to convert between program objects and load modules, as
described in “Using Utilities for Program Management” on page 6.

Program objects now support an unlimited number of data classes, representing
| multiple text classes, additional control information and user or compiler-specified
| data known as ADATA. Program text, the instructions and data which constitute

the executable portion of the module, may be divided into class segments, each of
which can be loaded into separate storage locations. Associated Data (ADATA) is
information about the module which is created by the language translator but not
required for linking, loading, or execution. Virtually any type of data which is asso-
ciated with a module or its constituent sections can be saved in a program object.
Some restrictions apply.

 Chapter 1. Introduction 3

 Introduction

New Object Module Support: The binder supports a modified extended object
| module, produced by the C and C++ compilers, and a new object module format
| introduced in a previous release, called Generalized Object File Format (GOFF).
| The extended object module format (XOBJ), allows C, C++ and COBOL program-
| mers to use long external names. The GOFF format (that is currently produces by
| the High Level Assembler) supports long names, multipart modules and ADATA.

Additionally, the binder supports C reentrant modules, dynamic linking, and
dynamic link libraries. All object module formats can be stored as sequential files,
as members of PDS or PDSE libraries or as OpenEdition files.

Fewer Restrictions: The binder and program objects ease or eliminate many
restrictions of the linkage editor and load modules. The linkage editor limited
aliases to 64 and external names to 32767. With the binder, the number of aliases
and external names for programs stored in a PDSE or OpenEdition file is limited
only by the space available to store them.

For program objects, external names (those entry points in one section which can
be referenced from another section or module or from the operating system) can be
up to 1024 bytes in length. Long names may be used for section names, external
labels and references, pseudoregisters and common areas, and aliases and alter-
nate entry points for the module. Primary or member names are still limited to
eight bytes, however, as are member names appearing in JCL or system macros.
For OpenEdition-resident program objects, OpenEdition name length restrictions
apply.

Application Programming Interface: The binder also provides the ability for pro-
grams to invoke the binder and request services individually. Any binder services
can be invoked directly, allowing your programs to access, update, and print the
contents of load modules and program objects. See Chapter 8, “Using the Binder
Application Programming Interface” on page 127.

Usability Improvements: The binder provides other usability improvements over
the linkage editor and batch loader. Messages and diagnostics have been
enhanced, producing diagnostic output that is more detailed and easier to under-
stand than the output of the linkage editor. Binder listings are also improved,
printing out more complete information about the run that produced a module,
including enhancements to the module map and cross reference table and a
summary of the data sets used.

There have also been usability improvements (from the linkage editor) in the binder
processing options and attributes. A replaceable CSECT in the binder allows the
system programmer to establish default options and attributes for the system or
installation. In addition, a new SETOPT binder control statement permits users to
vary attributes by module when the binder is creating multiple load modules or
program objects.

The Program Management Loader
The program management loader increases the services of the program fetch com-
ponent by adding support for loading program objects. The loader reads both
program objects and load modules into virtual storage and prepares them for exe-
cution. It relocates any address constants in the program to point to the appro-
priate areas in virtual storage and supports both the 24- and 31-bit addressing
ranges.

4 DFSMS/MVS V1R4 Program Management

 Introduction

| All program objects loaded from a PDSE are page-mapped into virtual storage.
| OpenEdition services are called to load a program object from an OE file. When
| loading program objects from a PDSE, the loader selects a loading mode based on

the module characteristics and parameters specified to the binder when you
created the program object. You can influence the mode with the binder
FETCHOPT parameter. The FETCHOPT parameter allows you to select whether
the program is completely preloaded and relocated before execution, or whether
pages of the program can be read into virtual storage and relocated only when they
are referenced during execution. (See “FETCHOPT: Fetching Mode Option” on
page 113 for more information on the FETCHOPT parameter.)

The Linkage Editor
The linkage editor is a processing program that accepts object modules, load
modules, control statements, and options as input. It combines these modules,
according to the requirements defined by the control statements and options, into a
single output load module that can be stored in a partitioned data set program
library and loaded into storage for execution by the program management loader.
The linkage editor also provides other processing and service facilities, including
creating overlay programs, aiding program modification, and building and editing
system libraries. It supports addressing and residence mode attributes in both 24-
and 31-bit addressing ranges. It does not support program objects or the (GOFF)
object format.

All of the services of the linkage editor can be performed by the binder.

The Batch Loader
The batch loader combines the basic editing and loading services (that can also be
provided by the linkage editor and program fetch) into one job step. The batch
loader accepts object modules and load modules, and loads them into virtual
storage for execution. Unlike the binder and linkage editor, the batch loader does
not produce load modules that can be stored in program libraries. The batch
loader prepares the executable program in storage and passes control to it directly.
The batch loader cannot accept program objects, GOFF object modules, or control
statements as input.

The batch loader provides high performance link-loading of programs that require
only basic linking and loading, and can be used if the program only requires listing
control or other processing options. Because of its limited options and ability to
process a job in one job step, the batch loader only requires about half the com-
bined linking and loading time of the linkage editor and program fetch.

Batch loader processing is performed in a load step, which is equivalent to the link-
edit and go steps of the binder or linkage editor. The batch loader can be used for
both compile-load and load jobs. It can include modules from a call library
(SYSLIB), the link pack area (LPA), or both. The batch loader resolves external
references between program modules and deletes duplicate copies of program
modules. It also relocates all address constants so that control can be passed
directly to the assigned entry point in virtual storage.

Like the other program management components, the batch loader supports
addressing and residence mode attributes in both the 24- and 31-bit addressing
ranges. The batch loader program is reenterable and therefore can reside in the
resident link pack area.

 Chapter 1. Introduction 5

 Introduction

Except for the processing of in-storage object modules, all of the services of the
batch loader can be performed by the binder.

Using Utilities for Program Management
DFSMS/MVS provides utility programs to help you manipulate data and data sets.
The IEBCOPY, IEHPROGM, and IEHLIST utilities can be used to support program
management tasks as described in this section. Information on using these utilities
is found in DFSMS/MVS Version 1 Release 3 Utilities.

The binder transport utility, (see Appendix F, “Using the Transport Utility” on
page 329) is used to convert a program object into a transportable program file and
vice versa. A binder API, (see Appendix L, “IEWBFDA—Fast Data Access” on
page 455) is used for fast data access to module data stored in a program object.

IEBCOPY: You can use the IEBCOPY utility program to copy a program module
from one program library to another. IEBCOPY can also perform conversions
between load modules and program objects. IEBCOPY can be used to copy a
program module from a partitioned data set program library to a PDSE program
library. IEBCOPY converts the new copy into the format appropriate for the target
program library. However, you cannot convert a program object into a load module
and store it in a partitioned data set library if the program object exceeds the limita-
tions of load modules (for example, if its length is greater than 16 MB).

The control statement, COPYGRP, allows you to copy a program library member
(load module or program object) and all of its aliases, specifying only a single
name. Since member and alias names are still limited to eight bytes in IEBCOPY
control statements, COPYGRP is required for copying members with long alias
names.

You can also use the IEBCOPY utility to alter relocation dictionary (RLD) counts of
load modules in place, and to reblock load modules. You do not need to alter RLD
counts for program objects, nor do you need to use the COPYMOD control state-
ment to change the block size of a program object library. The COPYMOD control
statement reblocks load modules to a block size best suited for the target device,
reducing the time it takes to load a program into virtual storage.

IEHPROGM: You can use the IEHPROGM utility or TSO commands to delete or
rename load modules, program objects, or their aliases. If the primary name of a
PDSE member is deleted or replaced, the associated aliases are deleted automat-
ically. If the primary name of a PDS member is deleted or replaced, the aliases are
not deleted automatically and continue to point to the original member. Aliases for
a deleted load module remain unless you specifically delete or replace them.

| IEHLIST: You can use the IEHLIST utility or TSO commands to list entries in the
| directory of one or more partitioned data sets or PDSE program libraries. IEHLIST
| can list up to ten partitioned data sets or PDSE directories at a time in an edited or
| unedited format.

The Program Management Transport Utility: The program management trans-
port utility (IEWTPORT) provides a method for accessing a program object on
systems where program management services (that is,the binder) is not installed.
The program object is converted by IEWTPORT into a nonexecutable format. The
converted object is called a transportable program. The transportable program can

6 DFSMS/MVS V1R4 Program Management

 Introduction

be transferred to other systems and processed by programs that understand its
| internal structure. This structure is documented.

IEWTPORT also converts transportable programs into program object format.
Load, bind and execute operations are performed on program objects, not trans-
portable programs.

See Appendix F, “Using the Transport Utility” on page 329 for information on how
to invoke the transport utility and how to access a transportable program.

The Fast Data Access API: The Fast Data Access API allows IBM and non-IBM
utility programs to quickly and efficiently obtain module data from DASD-resident
program objects. The API extracts a subset of the module similar to the GETD
function of the binder API, without the overhead of a binder dialog. It allows
selection by item (class and section) or class only and it does not support modifica-
tion of the program object. See Appendix L, “IEWBFDA—Fast Data Access” on
page 455 for more information.

Using Service Aids for Program Management
Service aids are programs designed to help you diagnose and repair failures in
system or application programs. The AMBLIST and AMASPZAP service aids can
be used to perform some program management tasks. For details on using these
programs, see OS/390 MVS Diagnosis: Tools and Service Aids.

| DFSMS/MVS Version 1 Release 4 DFSMSdfp Diagnosis Reference contains addi-
| tional diagnostic information.

AMBLIST: The AMBLIST service aid prints formatted listings of modules to aid in
problem diagnosis.

AMBLIST can be used to provide listings showing:

1. The attributes of program modules

2. The contents of the various classes of data contained in a program module,
including SYM records, IDR records, external symbols (ESD entries), text, relo-
cation entries (RLD entries), and ADATA

3. A module map or cross reference for a program module

4. The aliases of a program module, including the attributes of the aliases.

Listings of the modified link pack area (MLPA), fixed link pack area (FLPA),
pageable link pack area (PLPA), and their extended areas in virtual storage can be
printed together or separately.

Note: AMBLIST does not provide support for program objects in OpenEdition files.

AMASPZAP: The AMASPZAP service aid dynamically updates or dumps pro-
grams and data sets. You can use AMASPZAP to inspect and modify instructions
or data in any load module or program object in a program library, to dump a load
module or program object in a program library, or to update the system status index
in the directory entry for any load module or program object. Load modules can be
updated in place; when a program object is updated using AMASPZAP, a new copy
of the program object is created.

 Chapter 1. Introduction 7

 Introduction

8 DFSMS/MVS V1R4 Program Management

 Creating Programs

Chapter 2. Creating Programs from Source Modules

Program management components process the output of language translators and
compilers to produce an executable program unit.

A program can be divided into logical units that perform specific functions. Each of
these logical units of code is a module. Each module can be written in the sym-
bolic language that best suits its particular function, for example, assembler,

| BASIC, C, C++, COBOL, Fortran, PASCAL, or PL/I. Many modules can be bound
or link-edited into a single executable program unit. Object modules produced by
several different language translators can be merged to form a single program.

Note: This chapter refers to binder processing and output. These concepts apply
equally to linkage editor and batch loader processing unless otherwise noted in
Appendix B, “Using the Linkage Editor and Batch Loader” on page 261. The

| linkage editor and batch loader cannot process program objects, extended object
| modules, or GOFF object modules.

 Combining Modules
Each module of symbolic language code is first assembled or compiled by one of
the language translators. The input to a language translator is a source module.
The output from a language translator is an object module. Object modules are
relocatable modules of machine code that are not executable, and have one of
several formats:

� Traditional object modules (OBJ) produced by most IBM language products and
accepted by the binder, linkage editor, and batch loader.

| � Extended object modules (XOBJ) produced by C/C++ compilers and accepted
| only by the binder or the C/C++ prelinker.

� Generalized Object File Format (GOFF) object modules created by the High
Level Assembler and accepted only by the binder.

Before an object module can be executed, it must be processed by a program
management component into executable machine code. The batch loader and the
binder can produce executable code directly in virtual storage that executes and is
then discarded. The binder and the linkage editor can produce executable code
that can be stored in a program library. The binder can produce:

� A program object stored in a partitioned data set extended (PDSE) program
library

� A program object stored in a OpenEdition file system (OpenEdition) file

� A load module stored in a partitioned data set (PDS) program library.

The linkage editor can only produce load modules.

Program objects and load modules are units of executable machine code in a
format that can be loaded into virtual storage and relocated by the loader. Collec-

| tively, program objects and load modules are referred to as program modules. The
| PDSE and PDS data sets they reside in respectively, are referred to as program
| libraries.

 Copyright IBM Corp. 1991, 1997 9

 Creating Programs

Figure 2 on page 10 shows the steps required to create an executable program
from source modules. The binder API allows you to control specific binding oper-
ations. However, it is not possible to build a module, bind and save it, then con-
tinue to modify the module just saved. This can only be done by resetting the
workmod and re-including the saved module.

 ┌─────┐ ┌─────┐

 ┌─┴───┐ │ ┌──────────┐ ┌─┴───┐ │ ┌──────────┐ ┌────────────┐

 ┌─┴───┐ │ │ │ Language │ ┌─┴───┐ │ │ │ Program │ │ Executable │

 │ │ │ │──────5│Translator│──────5│ │ │ │──────5│Management│─────5│ Program │

 │ │ │ │ │ │ │ │ │ │ │ Binder │ │ │

│ │ ├─┘ └──────────┘ │ │ ├─┘ └──────────┘ └─────┬──────┘

 │ ├─┘ │ ├─┘ │

 └─────┘ └─────┘ │

 Source Object │

 Modules Modules 6

 ┌──────────┐

 │ Program │

 │Management│

│ Loader │

 └────┬─────┘

 │

 │

 6

 ┌──────────┐

 │Executable│

 └──────────┘

Figure 2. Preparing Source Modules for Execution and Executing the Program

 Sections
Every module is composed of one or more sections. A section is a unit of code
(instructions and data) and its related binding instructions and descriptive data.
The section normally corresponds to a single compilation unit, although a single
invocation of a language translator (compiler or assembler) can produce multiple
sections. The section is identified by its section name, and is the smallest unit of
module data which may be specified during binder editing operations (replace,
order, delete, etc.). Section is a generic term for control section, common section
(area), private code section, dummy section (DSECT), and read-only section
(RSECT).

Sections consist of one or more elements, each representing a separate class of
data. An element does not have a name and cannot be specified on binder control
statements. All elements of a section are edited as a unit: If a section is replaced,
ordered or aligned, then all of its elements are replaced, ordered or aligned. The
element represents the cross section of module data identified by a section name
and class name.

 Classes
Every module is composed of multiple classes, each with its own function and
format. Some classes represent program text, the instructions and data which are
loaded into virtual storage during execution. Other classes, such as ESD and RLD,
are required for binding and loading the program. Additional classes, such as IDR
and ADATA, provide descriptive information about the program module or its indi-
vidual sections and are of use primarily for maintenance and debugging.

10 DFSMS/MVS V1R4 Program Management

 Creating Programs

Like sections, classes consist of multiple elements, the same elements making up
the sections but organized by class rather than section. Each element in the class
represents the contribution of a single section to that class. The sequence of ele-
ments within the class is the same as the sequence of the sections within the
module, specified on either the ORDER control statement or the ORDERS API
function.

Classes are identified by class name. Unlike section name, which is assigned by
the source language programmer, class names are assigned by an IBM compiler or

| binder. Class names are a maximum of 16 bytes in length. Binder defined class
| names begin with “B.” Compiler-defined class names begin with “C.” User-defined
| class names can not use these prefixes and are limited to 14 bytes. Class names

are not normally required on binder control statements, but may appear in listings
and diagnostics. Each separately named class has a specified or an implied set of
binding and loading attributes.

Note: The class concept is new with the binder, although several fixed classes
(ESD, RLD, TEXT, IDR and SYM) were implicit in the old binding products.

 Common Areas
A common area is a data-only section which can be shared by multiple sections
within the module. Common areas may have a name, and if unnamed a name
consisting of a single blank will be assumed. The only supported text class for
common areas is B_TEXT, and all section contributions to identically-named
common areas effectively are overlaid.

Common areas provide shared space in the module text for data, not instructions.
Common areas cannot have initial data values; however, if both a section (CSECT)
and common area of the same name are present in the module, then the common
area will be overlaid on the CSECT, effectively initializing the common area.

Common areas are normally located at the end (highest virtual address) of the
module, but may be relocated by specifying the common area name in the ORDER
control statement. When creating a module in overlay format, if a common area is
referenced by sections in different paths then it will be moved to a segment higher
in the structure (closer to the root segment) which is common to both paths.

 Parts
Certain text classes may be further subdivided into parts. Like common areas,
named parts may be shared between sections and are defined with the longest
length and most restrictive alignment of all contributing sections. Unlike common
areas, they must be defined in classes other than B_TEXT. Initial text cannot be
assigned to parts.

Parts and common areas cannot share the same storage. While both sharing
methods can coexist in the same program module, a single shared data area must
use one or the other. Older compilers will continue to use common areas for data
sharing, whereas newer compilers will utilize parts.

Note: Parts are not supported by either the linkage editor or batch loader pro-
grams.

 Chapter 2. Creating Programs from Source Modules 11

 Creating Programs

 Pseudoregisters
External Dummy Sections, also called pseudoregisters, are varying sized units of
program storage which do not occupy space in the load module or program object.
External Dummy Sections are defined using the DXD assembler instruction and are
shared between all sections in the module in the same way that common areas are
shared: The attributes of the single, mapped area represent the longest length and
most restrictive alignment of all definers. Virtual storage for the pseudoregister(s) is
not provided in the program module, but is instead obtained during execution, using
the aggregate length provided by the linker, of all pseudoregisters. The concat-
enation of all uniquely named pseudoregisters is called the pseudoregister vector.

All of the linking products (linkage editor, batch loader and binder) support
pseudoregisters, although the implementations are different. The linkage editor and
batch loader process pseudoregisters separate from the other program elements
and identify them differently in messages and listings. The binder treats
pseudoregisters as parts in a “noload” class, B_PRV, and displays the PRV as it
would any other class. As a result, there is no separate “Pseudoregister” section in
the binder map, only another text class.

 Entry Points
An entry point in a program module is a location which is known by name to the
operating system and which can be referenced by or receive control from another
module. In PDS and PDSE libraries entry points are represented by directory
entries; entry points in OpenEdition files are each represented by a file name in the
OpenEdition directory structure.

The are four types of entry point in program modules:

� Primary entry point . This is the point which receives control when the module
is invoked by its primary, or member, name. The primary name is the name
which was specified on the NAME control statement or the SYSLMOD dd-
statement when the module was created.

� Alternate entry point . Alternate entry points are locations, other than the
primary entry, which may receive control or be referenced from another module.
An alternate entry point is defined during binding by use of an ALIAS control
statement (or ADDAlias API function) which specifies the name of an external
label in the program.

� True alias . A true alias is another name associated with the primary entry
point. It is also defined with an ALIAS control statement, but is not an external
label in the module.

� Alternate primary . MVS places certain restrictions on the lengths of member
names and aliases. If you specify a name on the NAME control statement
which exceeds the 8-byte limitation for member names, the binder will generate
an 8-byte primary name and store the specified name as a true alias. This
alias is referred to as the alternate primary and flagged in the directory entry.
The primary entry is also referred to as the generated primary.

The linkage editor does not support alternate primaries or any entry point name
longer than eight bytes.

12 DFSMS/MVS V1R4 Program Management

 Creating Programs

How the entry points are represented in the system depends on the type of file in
which the module is stored:

� PDSE program libraries support all of the entry point types listed above as
directory entries. The primary or generated primary name becomes the
member name and is limited to eight bytes. Alternate entry points, true aliases
and the alternate primary are stored as aliases and are limited in length to
1024 bytes.

� Partitioned data set (PDS) program libraries support primary entry point, alter-
nate entry point and true alias names up to a maximum of eight bytes. The
primary entry point appears as the primary directory entry; aliases and alternate
entry points appear as alias directory entries. Alternate primaries are not sup-
ported in a PDS.

� OpenEdition-resident program objects may contain primary names and true
aliases only. All names are limited to 255 bytes, not including the path name.
Alternate entry points and alternate primary entry points are not supported.

 External Symbols
Sections can contain symbolic references to locations defined in other sections.
These references are called external references. External references are made by

| using an address constant (adcon). For program objects, the binder only supports
| adcons that are three and four bytes in length. A symbol referred to by an external

reference must be an external name, the name of an entry point, or the name of a
pseudoregister. In modules containing only a single text class, the section (CSECT
or common area) name is an implied entry point.

By matching an external reference with an external label the binder resolves refer-
ences between sections. External references and external labels are called
external symbols. External symbols are defined in one section and can be referred
to in other sections. Figure 3 on page 14 shows how external symbols provide
connections between modules.

 Chapter 2. Creating Programs from Source Modules 13

 Creating Programs

 Object
 Module A
 ┌───────────┐

│ Section A │ Program Module
 │ . │ Object AB
 │ . │ ┌──────────┐

│ . │ │ Section A│

 │ ├──┐ │ . │

│ CALL B │ │ │ . │

 ├───────────┤ │ │ . │

│ Section C │ │ │ │

│ . │ │ │ CALL B │

 │ . │ │ ┌──────────┐ ├──────────┤

│ . │ │ │ Program │ │ Section C│

 │ │ └──5│Management│───────5│ . │

│ ENTRY C1 │ │ Binder │ │ . │

 └───────────┘ └──────────┘ │ . │

 & │ │

┌── │ │ ENTRY C1 │

│ External Names: │ ├──────────┤

│ Object │ │ Section B│

 │ Section Entry Name Module B │ │ . │

 │ A A ┌──────────┐ │ │ . │

External │ B B │Section B │ │ │ . │

Symbols │ C C │ . │ │ │ │

│ C C1 │ . ├───────────────┘ │ CALL C1 │

│ External References: │ . │ └──────────┘

 │ │ │

│ From A to B │ CALL C1 │

│ From B to C1 └──────────┘

 └──

Figure 3. External Names and External References

Object and Program Module Structure
Object modules, load modules, and program objects share the same logical struc-
ture consisting of:

� Control dictionaries, containing information to resolve symbolic cross-references
between sections and to relocate address constants. When a language trans-
lator converts source modules into object modules, it generates a control dic-
tionary entry whenever it processes an external symbol, address constant, or
section. Most language translators produce two kinds of control dictionaries: an
external symbol dictionary (ESD) and a relocation dictionary (RLD).

� Text, containing the instructions and data of the program.

� Identification (IDR) data, containing program control and user-provided informa-
tion about the modules.

� Associated data (ADATA) for various uses.

Each of these structural elements appears as one or more classes in the module.

14 DFSMS/MVS V1R4 Program Management

 Creating Programs

A description of the external symbol and relocation dictionaries follows:

External Symbol Dictionary
The external symbol dictionary (ESD) contains one entry for each external symbol
defined or referred to within a module. The dictionary contains an entry for each
external reference, entry name, named or unnamed control section, compiler
defined class, blank or named common area, and part or pseudoregister (external
dummy section). An entry name or named control section can be referred to by
any control section or separately processed module. An unnamed control section
cannot be referred to in this way.

The binder requires fewer ESD record types than the linkage editor. Symbol types
followed by an asterisk represent variations of the preceding type as they appear in
binder listings, GOFF modules, and program objects.

Each entry identifies a symbol or a symbolic reference and gives its location within
the module. Each entry in the ESD is classified as one of the following:

External reference
A symbol referenced in the module being processed that is defined as an
external name in another separately processed module. The ESD entry speci-
fies the symbol. The location is unknown.

Weak external reference *
An external reference that is not resolved by automatic library calls unless an
ordinary external reference to the same symbol is found. The ESD entry speci-
fies the symbol; the location is unknown.

External label definition
A name that defines an entry point within a section. The ESD entry specifies
the symbol, its location, the addressing mode, and identifies the section con-
taining the entry point.

Section definition
The symbolic name of a control section. The ESD entry specifies the symbol,
the length of the control section, and its location as an offset within the module
in which the section appears. The location represents the origin, or the first
byte, of the control section. This ESD entry also specifies the CSECT
addressing mode and residence mode.

Private code *
An unnamed section. The ESD entry specifies the section length, origin, and
may also specify the addressing mode and residence mode of the CSECT.
The name field contains blanks.

Blank or named common area *
A section used to reserve a virtual storage area that can be referenced by
other modules. The ESD entry specifies the name and length of the area. If
there is no name, the name field contains blanks.

Part reference
A reference to a named subdivision of module text which can be shared
between referencing sections. Parts may or may not occupy space in the
loaded module.

 Chapter 2. Creating Programs from Source Modules 15

 Creating Programs

Pseudoregister *
A facility (corresponding to the external dummy section feature of High Level
Assembler) that can be used to write reenterable programs. A pseudoregister
is a dynamically obtained word in virtual storage that can be used as a pointer
to dynamically acquired storage. The space for such areas is not reserved in
the program module but is acquired during execution. The ESD entry contains
the name, length, alignment, and displacement of the pseudoregister.

 Relocation Dictionary
The relocation dictionary (RLD) contains an entry for each address constant that
must be modified before a module is executed or requires adjustment during the
binding process. The entry specifies both the address constant location within a
section and the external symbol used to compute the value of the address con-
stant. (The external symbol may be defined in an ESD entry in another section).

The binder uses the RLD to adjust (relocate) the address constants for references
to other control sections and modules. The RLD is also used to readjust these
address constants after the loader reads a program object or load module from a
program library into virtual storage for execution.

The RLD can contain an entry for cumulative class length (CXD). It is commonly
used by the binder to store the total length required by all pseudoregisters in a

| program module. The CXD does not get relocated during loading. PO3 format
| program objects support a generalized CXD which is used to contain the total
| length of ANY class.

 Text
Text contains the instructions and the data belonging to the module. The multi-
class capability of the binder allows for more than one text class, each of which are
loaded into separate storage areas.

 Identification Data
Identification (IDR) data contains information about the module. The IDR data is
not used during program loading and execution. A listing of the IDR data for a
module may be obtained by executing the AMBLIST utility.

1. Link-edit or bind identification (IDRB)

IDRB data identifies the component which created the program module. IDRB
data is associated with the entire module never in individual sections.

2. Translator identification data (IDRL)

IDRL data is produced by the language translator and identifies the compiler or
assembler which produced the module or section and the date of compilation.

3. Zap identification data (IDRZ)

IDRZ data is created by AMASPZAP when it is executed against program
modules. It contains a maintenance identifier (such as PTF number) and the
date that the maintenance was applied.

4. User identification data (IDRU)

IDRU data is provided by the user on the IDENTIFY control statement for a
program module. It can contain any information pertinent to the associated

16 DFSMS/MVS V1R4 Program Management

 Creating Programs

section. It is created at bind time using the IDENTIFY control statement. See
“IDENTIFY Statement” on page 78 for more information.

 Module Attributes
The module attributes include the module entry point designation, module
reusability,and the module addressing and residence modes. The primary entry
point designation is stored in the END record of an object module. Module attri-
butes for load modules are stored in the directory entry for the partitioned data set
member. Module attributes for program objects are stored in the PDSE directory
entry and embedded within the program object.

Program Management Binder Batch Processing
This section describes the input and output of the binder and how the binder
produces a program object or load module in batch mode.

Input and Output
The binder accepts four major types of input:

1. Primary input defined in the primary input data set SYSLIN

2. Additional input specified with the INCLUDE control statement

3. Additional input incorporated by the program management binder from a call
library

This input can contain object modules and control statements, load modules, or
program objects.

4. Additional input specified as options in the PARM field of the JCL EXEC state-
ment.

Output of the program management binder is of the following types:

1. A program module placed in a program library as a named member, or a
program object placed in a OpenEdition file system file. Program objects are
stored in PDSE program libraries or OpenEdition files. Load modules are
stored in partitioned data set program libraries.

2. An executable module loaded into virtual storage.

3. Diagnostic and informational output produced as a sequential data set.

Figure 4 on page 18 shows the input and output sources for the program manage-
ment binder.

 Chapter 2. Creating Programs from Source Modules 17

 Creating Programs

 ┌─────┐ ┌───────────┐

 │ ├─┐ │ Program │

 │ │ ├─┐ Primary ┌─────5│ Module in │

 │ │ │ │ Input │ │ Program │

 │ │ │ │ ──────────────────────────────┐ │ │ Library │

 └─────┘ │ │ │ │ │ or HFS │

 └─┬───┘ │ │ │ │ File │

 └─────┘ │ │ └───────────┘

 6 │ ┌──────────┐

┌─────────────┐ ┌──────────┐ │ │Executable│

│ Automatic │ │ Program │ ─────┘ │Program in│

│ Call │─────────5│Management│ ───────────5│ Virtual │

│ Library │ │ Binder │ ─────┐ │ Storage │

└─────────────┘ └──────────┘ │ └──────────┘

 & │

 ┌─────┐ │ │

 ┌─┴───┐ │ │ │ ┌──────────┐

 ┌─┴───┐ │ │ │ │ │ │

 │ │ │ │ ──────────────────────────────┘ └─────5│Diagnostic│

 │ │ │ │ User-Specified │ Output │

 │ │ ├─┘ Input │ │

 │ ├─┘ └──────────┘

 └─────┘

Figure 4. Input and Output for the Binder

Creating a Program Module
A program module is composed of all input object modules and program modules
processed by the binder or linkage editor. The resultant control dictionaries are
collections of all the control dictionaries in the input modules. For load modules,
the control dictionaries are merged into a single composite external symbol dic-
tionary (CESD) and a single relocation dictionary (RLD). For program objects, the
control dictionaries are retained individually. Figure 5 on page 19 shows how mul-
tiple input modules are combined into a single program object.

The output module also contains the text from each input module. If the output is a
load module, it also contains an end-of-module indicator.

18 DFSMS/MVS V1R4 Program Management

 Creating Programs

Object Module A
 ┌────────────────┐ Output Program
 │ ESD │ Object AB
 ├────────────────┤ ┌──────────────┐

│ TXT ├─────────┐ │ ESD A │

 ├────────────────┤ │ ├──────────────┤

│ RLD │ │ │ ESD B │

 ├────────────────┤ │ ├──────────────┤

 │ END │ │ │ │

 └────────────────┘ │ ┌──────────┐ │ TXT A │

└──5 │ Program │ │ │

 │Management│──────────5 ├──────────────┤

┌──5 │ Binder │ │ │

│ └──────────┘ │ TXT B │

Object Module B │ ├──────────────┤

 ┌────────────────┐ │ │ RLD A │

 │ ESD │ │ ├──────────────┤

 ├────────────────┤ │ │ RLD B │

 │ TXT ├─────────┘ └──────────────┘

 ├────────────────┤

 │ RLD │

 ├────────────────┤

 │ END │

 └────────────────┘

Figure 5. A Program Object Produced by the Binder

As the binder processes object and program modules, it assigns relative virtual
storage addresses to control sections and resolves references between control
sections.

Creating a Program Object in a PDSE
You may use the binder to create a program object in a PDSE program library.
PDSE program libraries differ in format from PDSE data libraries: Data members,
including object modules, and program objects cannot reside in the same library.
For the format and content of the PDSE directory entry, see Appendix K, “Data
Areas” on page 433.

Program objects stored in a PDSE library may consist of multiple text classes. At
load time, the program management loader will load each text class above or below
16 MB, depending on attributes associated with that text class. Specifying the
RMODE(SPLIT) binder option will cause the module text in B_TEXT to be sepa-
rated into two classes, B_TEXT24 and B_TEXT31, for loading below and above the
line, respectively.

If you use the capabilities of the High Level Assembler or use the binder
RMODE(SPLIT) option to create multipart program objects, certain restrictions
apply. All entry points (primary and alternate) must be defined in the same class.
If parts of the program will reside above 16 MB then you must ensure that the
entire module can execute with AMODE(31) or that linkage between sections on
opposite sides of the 16 MB line use BASSM or equivalent to force an AMODE
switch when necessary. A binder option, HOBSET, will cause the high order bit on
V-type address constants to be set according to the addressing mode of the target.
Finally, overlay format is incompatible with multipart program objects.

If a multipart program object is subsequently loaded via a directed load or by the
binder, all text classes will be loaded into consecutive storage locations according
to the minimum RMODE value for all loaded classes.

 Chapter 2. Creating Programs from Source Modules 19

 Creating Programs

Creating a Program Object in An OpenEdition File
You may use the binder to create a program object in an OpenEdition file. The
program object will have the same content as a program object in a PDSE, so an
IEWBIND FUNC=GETD call will return the same data in either case. Also, you can
use the binder call interface to copy a program object from an OpenEdition file to a

| PDSE without loss of information or function. Be aware that OpenEdition does not
| support overlay format modules and has more limited alias support (i.e., it only sup-
| ports true aliases and does not support alternate entry points).

You may place a program object in an OpenEdition file by specifying the PATH
parameter on the SYSLMOD DD statement in a batch bind job.

| You can also use the binder call interface on the MVS OPUT or OPUTX commands
| to copy a program object from a PDSE to an OpenEdition file.

When specifying PATH in a batch bind job, you may provide either the complete path
name or a directory. If the PATH parameter designates a directory, you must
provide the file name on a NAME statement. The name on the NAME statement
must be no longer than 255 bytes.

You may also specify the PATHOPTS and PATHMODE parameters in the JCL. If you do
not, and the JCL designates a directory, the binder assigns attributes for the
created file that allow only the file owner to have read, write, and execute authority.

If you specify the PATH parameter for SYSLMOD, the save operation is always proc-
| essed as though you had specified REPLACE. Also, if you attempt to save a
| program object to an OpenEdition file and do not provide a name through the
| NAME control statement, the binder does not create a temporary name as it does
| when you save to a partitioned data set or PDSE under the same circumstance.
| Refer to the NAME statement under the "Control Statement Reference" of this book
| for a description of said condition.

You may provide an ALIAS control statement to designate the pathname to be
used for an alias. The binder appends the path information on the SYSLMOD DD
statement to each operand on the ALIAS control statement in order to form each
complete alias pathname. The path information on the ALIAS statement must be
no longer than 64 bytes per alias. For further information on aliases, see “ALIAS
Statement” on page 71.

 Restrictions
1. You may execute a program object that resides in an OpenEdition file either by

using OpenEdition commands or through the BPXBATCH facility. You cannot
execute such a program object from an MVS batch job using EXEC PGM=.

2. OpenEdition does not support alternate entry points. All aliases in OpenEdition
program objects are processed as though they were true aliases.

3. Overlay format modules are not supported in OpenEdition files.

20 DFSMS/MVS V1R4 Program Management

 Creating Programs

| Program Object Formats
| There are three program object formats. DFSMS/MVS 1.1 and 1.2 introduced
| program object format 1 (PO1 format). A PO1 format program object may be exe-
| cuted when using any release of DFSMS/MVS. Specifying COMPAT(PM1) will
| cause a module to be saved in PO1 format.

| Program object format 2 (PO2 format) was introduced in DFSMS/MVS 1.3. A PO2
| format program object may be executed on that release or later releases of
| DFSMS/MVS. Specifying COMPAT(PM2) will cause a module to be saved in PO2
| format.

| Program Object format 3 (PO3 format) may be built and executed on DFSMS/MVS
| 1.4 or later. Specifying COMPAT(PM3) will cause a module to be saved in that
| format.

| A module containing features not supported by a given version of the program
| object format cannot be saved in that format. PO3 format supports all PO2 and
| PO1 features and PO2 format supports all PO1 features (except overlay format).

| See “COMPAT: Binder Level Option” on page 109 for more information.

 Binding

 Assigning Addresses
Each module processed by the binder has an origin that was assigned during
assembly, compilation, or a previous execution of the binder or linkage editor.
When several modules, each with an independently assigned origin, are to be proc-
essed by the binder, the sequence of the addresses is unpredictable. Two input
modules may even have the same origin.

Each input module can be made up of one or more sections. To produce an exe-
cutable program object or load module, the binder assigns relative virtual storage
addresses to each section.

The addresses in a program module are consecutive, but are all relative to base
zero. When a program is to be executed, the loading program prepares the
module by loading it at a specific virtual storage location and then increasing each
address in the program by this base address. Each address constant is also read-
justed. This final readjustment is known as relocation.

Resolving External References
The binder resolves module references, matching symbol references to symbol
definitions by searching for the external symbol definition in the ESD of each input
module. Figure 6 on page 22 shows the binder matching the external reference to
B1 by locating the definition for B1 in the ESD of Module B. In the same way, it
matches the external reference to A11 by locating the definition for A11 in the ESD
of Module A.

 Chapter 2. Creating Programs from Source Modules 21

 Creating Programs

Input Module A Input Module B

 ┌────────────────────────────┐ ┌────────────────────────────┐

 │ │ │ │

 ├────────────────────────────┤ ├────────────────────────────┤

│ ESD for A │ │ ESD for B │

 │ ───────── │ │ ───────── │

 │ Symbol Type Location │ │ Symbol Type Location │

│ ────────────────────────── │ │ ────────────────────────── │

│ A1 Section Known │ ┌──────┼5B1 Section Known │

 │ Name │ │ │ Name │

│ ────────────────────────── │ │ │ ────────────────────────── │

│ A11 Entry Known %┼────┼──────┼─A11 External Unknown │

 │ Name │ │ │ Reference │

│ ────────────────────────── │ │ ├────────────────────────────┤

 │ B1 External Unknown ─┼────┘ │ Section B1 │

 │ Reference │ │ │

 ├────────────────────────────┤ │ . │

 │ Section A1 │ │ . │

 │ . │ │ . │

 │ . │ │ CALL A11 │

 │ . │ │ . │

│ ENTRY A11 │ │ . │

 │ . │ │ . │

 │ . │ │ │

 │ . │ └────────────────────────────┘

│ CALL B1 │

 │ . │

 └────────────────────────────┘

Figure 6. Use of the External Symbol Dictionary

Note: External names, including section names and entry names, should be one
to 1024 bytes in length. No leading or embedded blanks are permitted, nor
are the characters outside the range X'41' through X'FE'. However, the
hexadecimal codes X'0E' and X'0F' are recognized as the shift-in and
shift-out codes respectively for double byte character set (DBCS) encoding.

All other characters are permitted in any position of the name. Use special
characters with caution, because the compilers and assemblers that
produce object modules often have a more limited character set.

Creation of an Executable Program in Virtual Storage
The IEWBLDGO entry point of the binder prepares an executable program in virtual
storage and passes control to it directly. It combines binding and loading functions
into a single step, so it can be used for compile-load-and-go and load-and-go jobs.
IEWBLDGO cannot be used to produce a program module in a partitioned data set
or a PDSE.

| IEWBLDGO cannot be used for programs containing deferred load classes (such
| as C_WSA). Most XOBJ input to the binder will result in deferred load classes
| being built.

Addressing and Residence Modes
| A program module has a residence mode assigned to it, and each entry point and

alias has an addressing mode assigned to it. You can specify one or both of these
modes when creating a program module or you can allow the binder to assign
default values. For additional information see “AMODE and RMODE Hierarchy” on
page 24. The addressing and residence modes must be compatible. The binder,

22 DFSMS/MVS V1R4 Program Management

 Creating Programs

however, allows you to specify them as independent options and validates the com-
bination when the module is saved. See “AMODE and RMODE Combinations” on
page 24 for information on how the binder resolves addressing and residence
modes.

AMODEs and RMODEs can be assigned at assembly or compilation time for inclu-
sion in an object module. AMODE and RMODE values provided to the binder in
the ESD data of an object module are retained in the ESD data of the program
module (except for overlay programs). Overriding the AMODE and RMODE values
in the ESD (see “AMODE and RMODE Hierarchy” on page 24) sets the values in
the program library directory entry, but does not affect the ESD data.

A special, invalid combination of AMODE(ANY) RMODE(ANY), when appearing in
ESD records, is processed as AMODE(MIN). This setting is used by some com-
pilers when creating OBJ-format object modules which do not support
AMODE(MIN).

 Addressing Mode
You assign an addressing mode (AMODE) to indicate which hardware addressing
mode is active when the program executes. Addressing modes are:

24 indicates that 24-bit addressing must be in effect.

31 indicates that 31-bit addressing must be in effect.

ANY indicates that either 24-bit or 31-bit addressing may be in effect.

MIN requests that the binder assign an AMODE value to the program module.
The binder selects the most restrictive AMODE of all control sections in
the input to the program module. An AMODE value of 24 is the most
restrictive; an AMODE value of ANY is the least restrictive.

An AMODE value is provided for each entry point into the program module. The
main program AMODE value is stored in the primary directory entry for the program
module. Each alias directory entry contains the AMODE value for both the main
entry point and the alias or alternate entry point.

 Residence Mode
You assign a residence mode (RMODE) to specify where the module must be
loaded in virtual storage. (Program modules may not be loaded in data space
storage for execution.) Residence modes are:

24 indicates that the module must reside below the 16 MB virtual storage line
(within 24-bit addressable virtual storage).

ANY indicates that the module may reside anywhere in virtual storage either
above or below the 16 MB virtual storage line.

SPLIT indicates that the module is to be split into 2 class segments, one to be
loaded below 16 MB and one to be loaded above the 16 MB virtual
storage line.

The binder places the RMODE value in each directory entry applicable to that
program module.

 Chapter 2. Creating Programs from Source Modules 23

 Creating Programs

AMODE and RMODE Hierarchy
The binder uses the following hierarchy to determine the addressing and residence
modes of the program module output:

1. Values specified on the binder MODE control statement. See “MODE
Statement” on page 87 for more information.

2. Values specified in the PARM field of the EXEC statement used to invoke the
binder. See “AMODE: Addressing Mode Option” on page 108 and “RMODE:
Residence Mode Option” on page 121 for more information.

3. Values in the ESD data produced by the AMODE or RMODE assembler state-
ments or by the compiler

4. Default values of AMODE=24 and RMODE=24 when no valid values are speci-
fied.

AMODE and RMODE Combinations
If an AMODE or RMODE value is not specified on a MODE control statement or in
the PARM field of an EXEC statement, the binder derives a value based on infor-
mation in the ESD.

If RMODE is not specified, the module is assigned an RMODE of 24 if either:

� Any section in the module has an RMODE of 24 (Note that resident
LPA-resident sections resulting from the use of the RES Loader option are not
considered when determining RMODE)

� An AMODE of 24 has been specified or defaulted.

Otherwise, the module is assigned an RMODE of ANY. Note that some sections
(for example, those resident in the LPA) are not considered when determining
RMODE.

If AMODE is not specified, each entry point and alias in the module is assigned the
| AMODE of that entry point. If the entry point or alias does not correspond to a
| defined symbol or the symbol does not specify an AMODE, then the AMODE of the
| control section containing the entry point or alias will be used.

| If the AMODE of the section containing the entry point is AMODE(MIN) then the
| entry point is assigned the most restrictive AMODE of all control sections in the
| input to the program module. Note that the AMODE(MIN) can be in effect due to
| the conversion of ESD values AMODE(ANY) RMODE(ANY). (see “Addressing and
| Residence Modes” on page 22).

AMODE and RMODE Validation
The binder validates the AMODE and RMODE combination according to the fol-
lowing table:

A combination of AMODE=ANY and RMODE=ANY is changed to AMODE=31 and
RMODE=ANY unless AMODE=ANY has been directly specified on a control state-
ment or batch parameter. In this case, an error message is issued.

RMODE=24 RMODE=ANY

AMODE=24 valid invalid
AMODE=31 valid valid
AMODE=ANY valid invalid

24 DFSMS/MVS V1R4 Program Management

 Creating Programs

If AMODE is equal to 24 or ANY and RMODE=ANY has been directly specified as
a PARM field option or on a control statement, an error message is issued and
processing continues.

AMODE and RMODE for Overlay Programs
All entry points in program modules built in overlay format are assigned an AMODE
of 24 and the program modules are assigned an RMODE of 24 regardless of any
other values you have specified. RMODE(SPLIT) is not supported for overlay pro-
grams.

 Module Reusability
Reusability is a generic term describing the degree to which a module can be
shared, reused or replaced during execution. It incorporates the following
attributes:

� Non-reusable. The module is designed for single use only and must be
refreshed before it can be reused.

� Serially reusable. The module is designed to be reused and therefore must
contain the necessary logic to reset control variables and data areas at entry or
exit. A second task may not enter the module until the first task has finished.

� Reenterable (reentrant). The module is designed for concurrent execution by
multiple tasks. If a reenterable module modifies its own data areas or other
shared resources in any way, appropriate serialization must be in place to
prevent interference between using tasks.

� Refreshable. All or part of the module may be replaced at any time, without
notice, by the operating system. Therefore, refreshable modules must not
modify themselves in any way.

Unlike AMODE, reusability is an attribute of the entire module, not any particular
entry point. It should be chosen based on the operational characteristics of the
module and not on the reusability status of individual control sections or data

| classes. This is especially important in DFSMS V1R3 and higher releases, where a
module may consist of both reentrant and non-reentrant classes.

The linkage editor processed the serially reusable (REUS), reenterable (RENT) and
refreshable (REFR) attributes as separate and independent options. The binder,
however, treats them as a single, multi-valued attribute with an implied hierarchical
relationship: “refreshable” implies “reenterable” and “reenterable” implies “serially
reusable.” This may result in some confusion for prior linkage editor users who are
accustomed to specifying inconsistent combinations of these attributes, such as
“REFR,NORENT.” In such situations the binder selects the strongest reusability

| attribute among those specified. In addition, unlike the linkage editor, the binder
| honors any override of reusability specified in the PARM statement.

In order to eliminate such conflicts, specify only a single attribute from the set. Use
the keyword(value) form, such as REUS(RENT), rather than keyword-only specifi-
cations, such as NORENT or REFR. Note that the refreshable attribute is no
longer used by MVS and can be omitted.

 Chapter 2. Creating Programs from Source Modules 25

 Creating Programs

| Binder Extensions supporting the Language Environment for MVS
| Prelinker Functions
| Starting in DFSMS 1.4.0, the binder extends its capability to directly process XOBJ
| modules in the format accepted by the IBM Language Environment for MVS & VM
| prelinker, a utility used as an interim step in the binding of C reentrant programs.

| Prior to this release, an object module in XOBJ format had to be pre-processed by
| the prelinker to create an object module supporting C reentrancy. Added capability
| in the binder now allows for direct processing of XOBJ object modules, obviating
| the need for the prelinker and simplifying the process for binding C reentrant pro-
| grams. This provides for the creation of re-bindable modules, since the binder pre-
| serves sufficient information in the saved module to allow the replacement of one or
| more compilation units.

| The binder supports control statements that are functionally equivalent to those
| offered by the prelinker. The following table shows the relationships between
| binder and prelinker control statements.

| Control Statements

| ----------------------

| Binder | prelinker

| ----------------------

| AUTOCALL| LIBRARY

| IMPORT | IMPORT

| RENAME | RENAME

| Note: Prelinker replacement is supported by the binder only if COMPAT(PM3) is
| in effect.

Each XOBJ module will be converted to one or more named or unnamed sections
in the program object. The input XOBJ text will be moved to specific binder text
classes. The recipe cards in the XOBJ which provide instructions for initializing
writable static will be converted into actual initialized text. The major classes gen-
erated during XOBJ conversion are:

input XOBJ class in output program object

 ---------- -----------------------------

 reentrant code C_CODE

 writable static C_WSA

text in @@STINIT C_STINIT

text in @@DLLI C_DLLI

text in @@PPA2 C_PPA2

The binder also creates a table for use by language environment runtime routines
in class B_LIT. If they are generated, these classes can be seen in the binder map
output.

26 DFSMS/MVS V1R4 Program Management

 Creating Programs

Binder support for DLLs
A new option DYNAM(DLL) controls DLL processing. If DYNAM(DLL) is specified
the binder will:

� .Create linkage descriptors in C_WSA

� Process IMPORT control statements

� Build a table of information about imported and exported functions for the use
of LE runtime routines. This will appear in the map as class B_IMPEXP.

� Create a side file of IMPORT control statements, corresponding to functions
and data being exported by the module being built.

 Chapter 2. Creating Programs from Source Modules 27

 Creating Programs

28 DFSMS/MVS V1R4 Program Management

 Batch Interface

Chapter 3. Using the Binder Batch Interface

You can invoke the binder as you would any other program: as a job step, a sub-
program or a subtask, and as a TSO command. You can execute the binder as a
job step by specifying it on an EXEC job control statement in the JCL stream; you
can execute it as a subprogram or subtask by using the ATTACH, LINK, LOAD, or
XCTL macros. You can execute it under TSO with the LINK and LOADGO com-
mands. This chapter describes these methods of invoking the binder.

Note: This chapter refers to binder processing and output. These concepts apply
equally to linkage editor and batch loader processing unless otherwise noted in
Appendix B, “Using the Linkage Editor and Batch Loader” on page 261. The
linkage editor and batch loader cannot process program objects.

Invoking the Binder with JCL
You describe execution of the binder and the data sets used by the binder to the
system with job control language (JCL) statements.

This section summarizes those aspects of JCL that apply to the invocation of the
binder. The major topics covered are the EXEC statement, the DD statements, and
the cataloged procedures for the binder. You should be familiar with JCL as
described in OS/390 MVS JCL User's Guide.

Binder JCL Example
Figure 7 on page 30 contains an example of some JCL statements to invoke the
binder. You can tailor these statements for your own programming requirements.
These statements are similar to the linkage editor JCL statements. In fact, we con-
structed the example by modifying a set of JCL statements originally used to invoke
the linkage editor.

If you need assistance with any of the statements or options, the EXEC statement
parameter options are described in Chapter 7, “Binder Options Reference” on
page 101 and the input control statements are described in Chapter 6, “Binder
Control Statement Reference” on page 69. The EXEC and DD statements are
described in the remainder of this chapter.

 Copyright IBM Corp. 1991, 1997 29

 Batch Interface

//LKED EXEC PGM=IEWL,PARM='XREF,LIST', IEWL is alias of IEWBLINK

// REGION=2M,COND=(5,LT,prior-step)

//\

//\ Define secondary input

//\

//SYSLIB DD DSN=language.library,DISP=SHR optional

//PRIVLIB DD DSN=private.include.library,DISP=SHR optional

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) ignored

//\

//\ Define output module library

//\

//SYSLMOD DD DSN=program.library,DISP=SHR required

//SYSPRINT DD SYSOUT=\ required

//SYSTERM DD SYSOUT=\ optional

//\

//\ Define primary input

//\

//SYSLIN DD DSN=&&OBJECT,DISP=(MOD,PASS) required

// DD \ In-stream control statements

 INCLUDE PRIVLIB(membername)

 ENTRY entname

 NAME modname(R)

/\

Figure 7. Binder JCL Example

 EXEC Statement
The EXEC statement is the first statement of every job step. For the binder job
step, you may specify:

� The program name of the binder
� Binder options passed to the binder program
� Region size requirements for the binder.

EXEC Statement—PGM Parameter
The PGM parameter on the EXEC statement names the program to be executed.
The binder is executed using these program names:

IEWBLINK
Binds a program module and stores it in a program library. Alternative
names for IEWBLINK are IEWL, LINKEDIT, HEWL, and HEWLH096.

IEWBLDGO
Binds a program module, loads it into virtual storage, and executes it. Alter-
native names for IEWBLDGO are IEWLDRGO, LOADER, and HEWLDRGO.

For example, the following EXEC statement invokes the binder:

//LKED EXEC PGM=IEWBLINK

EXEC Statement—PARM Field
The EXEC statement can pass various options to the binder using the PARM field.
These options perform the following types of services:

� Assigning module attributes which describe the characteristics of the output
program module

� Invoking special binder processing services (for example, exclusive call and
automatic call)

30 DFSMS/MVS V1R4 Program Management

 Batch Interface

� Defining the amount of storage to be used by the binder for processing and
output program library buffers

� Specifying the kind of output the binder is to produce.

These options can be coded in any order in the PARM field, or can be listed in a
data set and included using the OPTIONS keyword.

See Chapter 7, “Binder Options Reference” on page 101 for information on indi-
vidual options.

Preparing the PARM Field to Invoke the Loader: When you invoke the loader,
(PGM=IEWBLDGO), both the loader and the loaded program options are specified
in the PARM field. The PARM field has this syntax:

,PARM='[loaderoptions][/programoptions]'

The loaded program options, if any, must be separated from the loader options by
a slash (/). If there are no loader options, the program options must begin with a
slash. The entire PARM field may be omitted if there are neither loader nor loaded
program options. Parameters must be enclosed in single quotation marks when
special characters (/ and =) are used.

EXEC Statement—REGION Parameter
The REGION parameter specifies the maximum amount of storage that can be allo-
cated to satisfy a request for storage made by the binder. You should normally not
need to specify this parameter if the installation default region size or system proce-
dures specify enough storage. The recommended minimum region size is 2 MB.
While the amount of storage required by the binder is directly related to the number
of pieces being bound together (not necessarily the text size itself, but the number
of CSECTs, load modules, RLDs, etc. being combined), in most cases 2 MB should
be sufficient. The binder executes in 31 bit addressing-mode so storage can be
obtained from above the line (if available). The recommended values for region
size are 2048 KB for program modules with a text size of 1024 KB or less, and
twice the text size for program modules with a text size greater than 1024 KB. The
binder usually requires a larger region size than the linkage editor. Unlike the
linkage editor, the binder does not use temporary disk data sets when virtual
storage is exhausted. In addition, the binder can build larger programs than the
linkage editor, and so may need more virtual storage.

 DD Statements
Every data set the binder uses must be described with a DD statement. Each DD
statement must have a name, unless data sets are concatenated. The DD state-
ments for data sets the binder requires have preassigned names, those for addi-
tional input data sets have names you assign, and those for concatenated data sets
(after the first) have no names. When you invoke the binder from another program,
you can allocate some or all of the binder's data sets using dynamic allocation
instead of JCL.

 Chapter 3. Using the Binder Batch Interface 31

 Batch Interface

Binder DD Statements
| The binder uses eight types of data sets. Some are required, and the DD state-

ments for all but two use the preassigned ddnames shown in Figure 8. The fol-
lowing descriptions give device and data set information for each binder data set.

SYSLIN DD Statement: The SYSLIN DD statement is required. It describes the
primary input data set, which resides on direct access storage or magnetic tape. It
can be a sequential data set, a partitioned data set member, a PDSE member, an
in-stream data set, or an OpenEdition file. If it is an OpenEdition file, you must
specify the PATH parameter.

Each data set in the primary input must contain object modules and control state-
ments, load modules, or program objects. They cannot be mixed within a data set

| except that control statements can appear before or after an object module in the
| same data set. Data sets can be concatenated under the SYSLIN DD statement to
| define the primary input. The binder does not support concatenation of
| OpenEdition files.

“Defining the Primary Input” on page 44 contains information about input require-
ments.

The data characteristics vary by data type and are shown in Figure 9.

Figure 8. Binder DDNAMES

Data Set ddname Required

Primary input data set SYSLIN Yes

Options data set any name Required when OPTIONS=ddname coded in
PARM field of EXEC statement.

Automatic call library SYSLIB Only if automatic library call is used

Other include library or
sequential data set

any name Required when referenced on INCLUDE
statement

Diagnostic output data set SYSPRINT
SYSLOUT

SYSPRINT is required when using the
IEWBLINK entry point.

Output module library SYSLMOD Required when using the IEWBLINK entry
point.

Alternate output data set SYSTERM Only if the TERM option is specified

| Output data set for side file
| (import records used during
| dynamic binding)

| SYSDEFSD| No

Figure 9. SYSLIN Data Set DCB Parameters

LRECL BLKSIZE RECFM

80 80 F, FS, OBJ, XOBJ, control statements, and GOFF

80 32720 (maximum size) FB, FBS OBJ, XOBJ, control statements, and
GOFF

84+ 32720 (maximum size) V, VB, GOFF object modules

n/a 32720 (maximum size) U, load modules

n/a 4096 U, program objects

32 DFSMS/MVS V1R4 Program Management

 Batch Interface

Options Data Set: A DD statement defining an options data set is required if the
OPTIONS keyword has been included in the PARM field of the EXEC statement.
When the OPTIONS keyword is included, some or all of the processing and attri-
bute options are encoded in a data set instead of in the PARM field. See
“OPTIONS: Options Option” on page 117 for information on how to code the
options data.

The options DD statement is coded using the same ddname as specified on the
OPTIONS keyword. The DSNAME parameter references an existing sequential

| data set, or a member of a partitioned data set, or an OpenEdition file. containing
80-byte records.

SYSLIB DD Statement: The SYSLIB DD statement is required if you have
requested the automatic library call option (i.e. AUTOCALL). This DD statement
describes the automatic call library, which must reside on a direct access storage
device. The data set must be a library and you must not specify member names.
You can concatenate any combination of object module libraries and program
libraries for the call library. If object module libraries are used, the call library can
also contain any control statements other than INCLUDE, LIBRARY, and NAME. If

| this DD statement specifies an OpenEdition file, you can specify either an
| OpenEdition archive library or a PATH parameter that designates a directory.

The required data characteristics for object module libraries are the same as those
shown in Figure 9 on page 32. For program libraries, a record format of U is
required. For partitioned data set program libraries, the maximum block size is
equal to the maximum for the device used, not the record read. For PDSE
program libraries, the block size is 4 KB. You do not specify a value.

| The binder does not support OpenEdition files as part of a concatenation.

SYSPRINT and SYSLOUT DD Statements: If you use IEWBLINK or an alias of
IEWBLINK, the SYSPRINT DD statement is required. If you use IEWBLDGO or
one of its aliases, you can include a SYSLOUT DD statement, but SYSLOUT is not
required. Both SYSPRINT and SYSLOUT describe the diagnostic output data set,
which can be a sequential data set assigned to a printer or to a temporary storage
device. If a temporary storage device is used, the data records contain an ANSI
control character as the first byte.

| The usual specification for this data set is SYSOUT=*. The binder uses a logical
record length of 121 and a record format of FBA and allows the system to deter-
mine an appropriate block size.

Figure 10 shows the data set requirements for SYSPRINT and SYSLOUT. Block
size is the only information that you can provide.

| SYSPRINT or SYSLOUT can also be assigned to an OpenEdition file.

Figure 10. SYSPRINT and SYSLOUT DCB Parameters

LRECL BLKSIZE RECFM

121 121 FA

121 32670 (maximum size) FBA

125 VA or VBA

 Chapter 3. Using the Binder Batch Interface 33

 Batch Interface

| SYSLMOD DD Statement: The following SYSLMOD information applies only to
| the batch interface of the binder.

The SYSLMOD DD statement is required. It describes the output program library,
which must be a partitioned data set, a PDSE, or an OpenEdition file. If it is an
OpenEdition file, you must specify the PATH parameter. OpenEdition supports the
use of an alternate ddname for SYSLMOD.

A member name can be specified on the SYSLMOD DD statement. If a member
name is specified, it is used only if a name was not specified on a NAME control
statement. This member name must conform to the rules for the name on the
NAME control statement (see “NAME Statement” on page 88).

If SYSLMOD is referenced by an INCLUDE statement, a member name on the DD
statement must be the name of an existing member.

Note: If you specify the PATH parameter on this DD statement, but do not specify
PATHOPTS or PATHMODE, the binder assigns attributes for the created file that allow
only the file owner to have read, write, and execute authority.

| The following SYSLMOD information applies to both the batch and the application
| programming interface (API) of the binder:

� If the member is to replace an identically named member in an existing library,
then the disposition should be OLD or SHR.

� If the member is to be added to an existing library, then the disposition should
be MOD, OLD, or SHR.

� If no library exists and the member is the first to be added to a new library,
then the disposition should be NEW or MOD.

� If the member is to be added to an existing library that may be used concur-
rently by other users in the system or in other systems sharing the library, then
the disposition should be SHR.

If SYSLMOD defines a NEW data set, then the RLSE subparameter should not be
specified since the binder closes the data set after saving each member.

The binder assigns U for record format for all partitioned data sets, even if you
request a different record format. The binder also assigns U for record format for
PDSEs if you do not request a record format or if you specify RECFM=U.
However, if you specify RECFM with a record format other than U in PDSEs, then
the binder stops processing and issues an error message.

The binder always assigns a block size of 4 KB to a program object. Procedures
used by the binder to assign block size to a load module are:

1. If the data set is new:

a. When the DCBS option is not specified

� When the data set is created without a block size, the block size is the
maximum supported by the access method for that device type.

� When the data set is created with a block size, the block size specified
on the DD statement is used if it is smaller than the maximum block
size supported by the device.

34 DFSMS/MVS V1R4 Program Management

 Batch Interface

� Certain of the binder options can restrict the blocksize. The block size
is:

– 1KB if the DC option is specified,
– the value specified on the MAXBLK option,
– one-half the value specified for value2 on the SIZE option,

b. When the DCBS option is specified, the block size is the smaller of:

� The maximum block size for the device
� The value of the BLKSIZE parameter on the SYSLMOD DD statement
� The actual output buffer length.

c. The minimum block size is 256 bytes.

2. If the data set already exists:

� When the DCBS option is not specified, the larger of the existing block size
or 256 bytes is used.

� See “DCBS Option” on page 111 for the block size determination when the
block size exists and the DCBS option is specified.

In the following example, the SYSLMOD DD statement specifies a permanent parti-
tioned data set library on an IBM 3390 direct access storage device:

//SYSLMOD DD DSNAME=USER.USERLIB(TAXES),DISP=NEW,UNIT=339ð,...

The binder assigns a record format of U and a block size of 32760 bytes.
However, consider the following example:

//LKED EXEC PGM=IEWBLINK,PARM='XREF,DCBS'
...

//SYSLMOD DD DSNAME=USER.USERLIB(TAXES),DISP=SHR,UNIT=339ð,

// DCB=BLKSIZE=8ððð

The binder still assigns a record format of U, but the block size is 8000 bytes rather
than 32760 bytes because of the use of the DCBS option.

SYSTERM DD Statement: The SYSTERM DD statement is optional. It defines a
data set for error and warning messages that supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement and specifying
TERM in the PARM field of the EXEC statement. SYSTERM output consists of
messages that are written to both the SYSTERM and SYSPRINT data sets.

The following example shows the SYSTERM DD statement used to specify the
system output unit:

//SYSTERM DD SYSOUT=A

The data set characteristics for SYSTERM (LRECL=80 and RECFM=FB) are sup-
plied by the binder. The block size may be any multiple of 80 bytes acceptable to
the hardware. If necessary, the binder modifies the data set characteristics of an

| existing data set to enforce the LRECL and RECFM values. SYSTERM can also
| be allocated to an OpenEdition file.

| SYSDEFSD DD Statement: When the DYNAM(DLL option is used to build a DLL
| module, a side file might be generated along with it. The side file is saved in the
| data set represented by the SYSDEFSD ddname. The side file contains the

 Chapter 3. Using the Binder Batch Interface 35

 Batch Interface

| symbols which other DLLs can import from. That is, which symbols the DLL
| “exports.” Consequently, a side file contains a collection of IMPORT control state-
| ments which can be used by other DLLs in order to resolve their own external ref-
| erences during dynamic linking. If a DLL does not export any symbols, no side file
| is generated for it.

| SYSDEFSD may be a sequential data set, an OpenEdition file, a PDS, or a PDSE.
| If your job binds multiple DLLs and SYSDEFSD represents a sequential data set or
| an OpenEdition file, the side file records of a given DLL may overwrite or append
| to the records of a previously saved side file, depending on the DISP or
| PATHOPTS parameter of your side file ddname.

| If SYSDEFSD is a PDS or a PDSE, the binder saves the side file as a member of
| the indicated partitioned data set. The binder progresses through the following
| sources until it determines the name to use for the side file:

| 1. The binder uses the member name specified in the JCL for the SYSDEFSD
| DD. Note that in this case the side file is treated as a sequential file.

| 2. If no member was specified, then the binder uses the name specified in the
| NAME control statement for the saved DLL.

| 3. If there is no NAME control statement, then the binder uses the name
| expressed in the JCL SYSLMOD DD statement.

| The SYSDEFSD DD statement is optional. However, when it is absent, the binder
| issues a warning message if at bind time a module (DLL) generates export records
| and the DYNAM(DLL) binder option has been specified. Note that the side file can
| be referred to as the definition side deck by other products.

| Figure 11 shows the data set requirements for SYSDEFSD.

| Figure 11. SYSDEFSD DCB Parameters

| LRECL| BLKSIZE| RECFM

| 80| 32760 (maximum size)| F,FB

Additional DD Statements
Each ddname specified on an INCLUDE or LIBRARY control statement must be
defined with a DD statement. These DD statements describe sequential data sets,
partitioned data sets, PDSEs, or OpenEdition files.

You specify the ddnames along with any other necessary information. The require-
ments for these data sets are shown in Figure 12.

Figure 12. INCLUDE and LIBRARY Control Statements DCB Parameters

Data Set Contents LRECL BLKSIZE RECFM

Object modules or control
statements

80
80

80
32760 (maximum)

F, FS
FB, FBS

Load modules Ignored Maximum for device, or value
specified on the MAXBLK option,
whichever is smaller

U

Program objects Ignored 4096 U

36 DFSMS/MVS V1R4 Program Management

 Batch Interface

Binder Cataloged Procedures
The MVS operating system allows you to store job control statements under a
unique member name in a procedure library. Such a series of statements is called
a cataloged procedure. These JCL statements can be recalled at any time to
specify the requirements for a job. To request this procedure, place an EXEC
statement in the input stream. This EXEC statement specifies the unique member
name of the desired procedure.

The specifications in a cataloged procedure can be temporarily overridden, and DD
statements can be added. The information that you alter is in effect only for the
duration of the job step; the cataloged procedures are not altered permanently.
Any additional DD statements that you supply must follow those that override
existing JCL statements in the same procedure step. For more information on
using cataloged procedures, see OS/390 MVS JCL User's Guide.

Two binder cataloged procedures are provided: a single-step procedure that binds
the input and produces a program module (LKED procedure), and a two-step pro-
cedure that binds the input, produces a program module, and executes that module
(LKEDG procedure). Many of the cataloged procedures provided for language
translators also contain binder steps. The EXEC and DD statement specifications
in these steps are similar to the specifications in the cataloged procedures
described in the following paragraphs.

 LKED Procedure
LKED is a single-step procedure that binds the input, produces a program module,
and passes the module to another step in the same job.

//LKED EXEC PGM=HEWLHð96,PARM='MSGLEVEL(4),XREF,LIST,LET,NCAL',

// REGION=2M

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSN=&&GOSET(GO),SPACE=(1ð24,(5ð,2ð,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

 Statement Description
A description of the statements in the procedure follows:

EXEC
The PARM field specifies the NCAL option. If an automatic call library is to be
used, you must override the NCAL option and add a SYSLIB DD statement.

SYSPRINT
Specifies the SYSOUT class A, which is either a printer or a temporary storage
device. If a temporary storage device is used, ANSI control characters accom-
pany the data to be printed.

SYSLIN
The specification of DDNAME=SYSIN allows you to specify any input data as
long as it fulfills the requirements for binder input. You must define the input
data with a SYSIN DD statement. This data may be either in the input stream
or reside in one or more separate data sets.

If the data is in the input stream, use the following DD statement:

//LKED.SYSIN DD \

 Chapter 3. Using the Binder Batch Interface 37

 Batch Interface

Place the SYSIN statement following all overriding DD statements for the LKED
catalog procedure. The object module decks and control statements should
follow the SYSIN statement, with a delimiter statement (/*) at the end of the
input.

If the data resides in separate data sets, use the following DD statement:

//LKED.SYSIN DD (parameters describing the input data set)

Place the SYSIN statement following all overriding DD statements for the LKED
catalog procedure. Several data sets may be concatenated as described in
Chapter 4, “Defining Batch Input to the Binder” on page 43.

SYSLMOD
Specifies a temporary data set and a general space allocation. The disposition
allows the next job step to execute the program module. If the module is to
reside permanently in a library, these general specifications must be over-
ridden.

Invoking the LKED Procedure
To invoke the LKED procedure, code the following EXEC statement:

//stepname EXEC LKED

The following example shows a sample JCL sequence for using the LKED proce-
dure in one step to bind object modules to produce a program module, then
execute the program module in a subsequent step.

//LESTEP EXEC LKED

(Overriding and additional DD statements for the LKED step)

//LKED.SYSIN DD \

(Object module decks and control statements)

//EXSTEP EXEC PGM=\.LESTEP.LKED.SYSLMOD

(DD statements and data for load module execution)

LESTEP invokes the LKED procedure and EXSTEP executes the program module
produced by LESTEP.

 LKEDG Procedure
LKEDG is a two-step procedure that binds the input, produces a program module,
and executes that module. The statements in this procedure are shown in the fol-
lowing example. The two procedure steps are named LKED and GO. The specifi-
cations in the statements in the LKED step are identical to the specifications in the
LKED procedure.

//LKED EXEC PGM=HEWLHð96,PARM='MSGLEVEL(4),XREF,LIST,NCAL',

// REGION=2M

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSN=&&GOSET(GO),SPACE=(1ð24,(5ð,2ð,1)), \

// UNIT=SYSDA,DISP=(MOD,PASS)

//GO EXEC PGM=\.LKED.SYSLMOD,COND=(4,LT,LKED)

GO Step
The EXEC statement specifies that the program to be executed is the program
module produced in the LKED step of this job. This module was stored in the
data set described on the SYSLMOD DD statement in that step. (If a NAME
statement was used to specify a member name other than that used on the

38 DFSMS/MVS V1R4 Program Management

 Batch Interface

SYSLMOD statement, use the LKED procedure and provide your own GO
step.)

The condition parameter specifies that the execution step is to be bypassed if
the return code issued by the LKED step is greater than 4.

Invoking the LKEDG Procedure
To invoke the LKEDG procedure, code the following EXEC statement:

//stepname EXEC LKEDG

The following example shows a sample JCL sequence for using the LKEDG proce-
dure to bind object modules, produce a program module, and execute that module.

//TWOSTEP EXEC LKEDG

(Overriding and additional DD statements for the LKED step)

//LKED.SYSIN DD \

(Object module decks or control statements, or both)

/\

(DD statements for the GO step)

//GO.SYSIN DD \

(Data for the GO step)

/\

Invoking the Binder from a Program

General-use programming interface

You can pass control to the binder from a program in one of two ways:

1. As a subprogram, with the execution of a CALL macro instruction (after the
execution of a LOAD macro instruction), a LINK macro instruction, or an XCTL
macro instruction.

2. As a subtask with the execution of the ATTACH macro instruction.

24-bit or 31-bit addressing can be used with any of these macros.

The syntax of the macros used to invoke the binder follows:

EP=bindername
specifies a symbolic name of the binder. You use these names to invoke the
binder for the indicated services:

IEWBLINK
Binds a program module and stores it in a program library. Alternative
alias names are IEWL, LINKEDIT, HEWL, and HEWLH096.

IEWBLOAD
Binds a program module and loads it into virtual storage, but does not
identify it. Upon return from IEWBLOAD,

[symbol] {ATTACH|
 LINK|
 XCTL}

EP=bindername,
PARAM=(optionlist[,ddname list]),
VL=1

[symbol] LOAD EP=bindername

 Chapter 3. Using the Binder Batch Interface 39

 Batch Interface

� Register 0 contains the entry point address of the loaded program.
The high order bit is on for AMODE 31 or ANY or off for AMODE 24.

� Register 1 contains the address of a two-word area containing the
following information:

– Word 1 contains the address of the beginning of the virtual
storage occupied by the loaded program.

– Word 2 contains the size in bytes of the virtual storage occupied
by the loaded program.

Alternative alias names are IEWLOADR, HEWLOADR, and IEWLOAD.

IEWBLODI
Binds a program module, loads it into virtual storage, and identifies it to
the system using the IDENTIFY macro. Upon return from IEWBLODI,

� Register 0 contains the entry point address of the loaded program.
The high order bit is on for AMODE (for the linkage editor and the
binder).

� Register 1 contains the address of an 8 byte field containing the
module name used on the IDENTIFY macro.

Alternative alias names are IEWLOADI and HEWLOAD.

IEWBLDGO
Binds a program module, loads it into virtual storage, and executes it.
Alternative alias names are IEWLDRGO, LOADER, and HEWLDRGO.

PARAM=(optionlist[,ddname list])
specifies, as a sublist, address parameters to be passed from the program to
the binder.

optionlist
specifies the address of a variable-length list containing the options and
attributes. This address must be provided even if no list is provided.

The option list must begin on a half-word boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the list. If
no options or attributes are specified, the count must be zero. The option
list is free form, with each field separated by a comma. No blanks or zeros
should appear in the list. Chapter 7, “Binder Options Reference” on
page 101 and “EXEC Statement” on page 30 have more information about
options.

ddname list
specifies the address of a variable-length list containing alternative
ddnames for the data sets used during binder processing. If standard
ddnames are used, this operand may be omitted.

The ddname list must begin on a halfword boundary. The 2 high-order
bytes contain a count of the number of bytes in the remainder of the list.
Each name of less than 8 bytes must be left justified and padded with
blanks. If an alternate ddname is omitted from the list, the standard name
will be assumed. If the name is omitted within the list, the 8-byte entry
must contain binary zeros. Names can be omitted from the end by merely
shortening the list.

40 DFSMS/MVS V1R4 Program Management

 Batch Interface

The sequence of the 8-byte entries in the ddname list is as follows:

Entry Alternate Name For:

1 SYSLIN

2 Member name (the name under which the output module is stored
in the SYSLMOD data set; this entry is used if the name is not
specified on the SYSLMOD DD statement or if there is no NAME
control statement)

3 SYSLMOD

4 SYSLIB

5 Not applicable

6 SYSPRINT or SYSLOUT

7-11 Not applicable

12 SYSTERM

| 13 SYSDEFSD

VL=1
specifies that the sign bit is to be set to 1 in the last fullword of the address
parameter list.

When the binder completes processing, a return code is returned in register 15.
See Appendix C, “Program Management Return Codes” on page 279 for a list of
return codes.

For more information on the use of these macro instructions and for the syntax of
the CALL macro, see. OS/390 MVS Assembler Services Guide.

You must code optionlist and VL1 on CALL.

End of General-use programming interface

Invoking the Binder Under TSO
You can invoke the binder under TSO (Time Sharing Option) with the LINK and
LOADGO commands.

The LINK command creates a program module and saves it in either a partitioned
data set or PDSE program library.

When using the LINK command to process binder control statements, you must
allocate any referenced ddnames before the LINK command is invoked. The
binder gives you the capability of including modules and control statements from
the automatic call library (SYSLIB) or including program modules from the module
output library (SYSLMOD). If you specify SYSLIB or SYSLMOD on an INCLUDE
statement but have not allocated data sets to those ddnames, the binder will
attempt to process the INCLUDE statement using the data sets indicated on the
LIB or LOAD parameters, respectively.

The LOADGO command creates and executes a program module. The module is
not saved in a program library. The LOADGO command invokes a prompter that

 Chapter 3. Using the Binder Batch Interface 41

 Batch Interface

allows you to define any necessary data sets to the system; you can use LOADGO
operands to specify the loading options the job requires.

See TSO/E Command Reference for the procedures for using these commands.

| Invoking the Binder under OpenEdition
| You can invoke the Binder from the OpenEdition shell using the c89 command.
| See OS/390 OpenEdition Command Reference. for more information.

42 DFSMS/MVS V1R4 Program Management

 Batch Input

Chapter 4. Defining Batch Input to the Binder

Batch input to the binder consists of the primary input data set and additional data
sets. You define the primary input data set using job control statements. You can
include more modules by specifying additional control statements and by directing
the binder to use call libraries.

Input data sets can contain control statements, object modules of any type, load
modules and program objects. This data may reside in one or more of the fol-
lowing data set types:

 Sequential PDS PDSE OpenEdition

 Data Set Member Member File

--------------------------- ---------- ------- ------- ------

 Control Statements X X X X

Object Modules (all types) X X X X

 Load Modules X

 Program Objects X X

A single library member can contain only one program object or load module, but
any number of control statements and object modules in combination.

OpenEdition files may contain binder input of all types except load modules. You
specify OpenEdition by coding the PATH parameter on your JCL. Where sequen-
tial processing is required, you must include the full file name on the PATH param-
eter; otherwise, code only the directory name for PATH, omitting the last level of
qualification (file name). The file name will be supplied by the binder, either from
the INCLUDE statement or from the unresolved reference during autocall.

In addition to the data set type, you must consider how the binder will access the
data set. Sequential access requires that a physical sequential data set be speci-
fied or that a member name be specified with the library dsname. Partitioned
access requires that a partitioned data set, PDSE or OpenEdition directory be spec-
ified, without an associated member or file name. Access requirements depend on
the time that the input is required:

� Primary input is accessed sequentially. Any library in the concatenation must
include a member name with the dsname or path.

� Secondary (included) input may be either sequential or partitioned. If parti-
tioned, the member name(s) must be specified on the INCLUDE control state-
ment.

� Autocalled input must be partitioned.

The binder supports mixed concatenations of the above, with the following
exceptions:

� You must not mix data set types in a single concatenation. All concatenated
data sets must be either partitioned or sequential, not both. A PDS or PDSE
member is treated as a sequential data set

� The binder does not support OpenEdition files concatenated with other
OpenEdition files or data sets of any type.

Note: This chapter refers to binder processing and input. These concepts apply
equally to linkage editor and batch loader processing unless noted otherwise in
Appendix B, “Using the Linkage Editor and Batch Loader” on page 261. The

 Copyright IBM Corp. 1991, 1997 43

 Batch Input

linkage editor and batch loader cannot process program objects, extended object
modules, or GOFF modules.

Defining the Primary Input
The primary input, required for every binder job step, is defined on a DD statement
with the ddname SYSLIN. Primary input can be:

� A sequential data set

� A member of a partitioned data set (PDS)

� A member of a partitioned data set extended (PDSE)

� Concatenated sequential data sets, or members of partitioned data sets or
PDSEs, or a combination

� An OpenEdition file.

The primary data set can contain object modules, control statements, load modules
and program objects. All modules and control statements are processed sequen-
tially and their order determines the order of binder processing. The order of the
sections after processing, however, might not match the input sequence.

Note that the compiler-loader interface, which allowed object code to be passed to
the batch loader, is not supported by the binder. Programs using this facility should
be converted to use the binder's general application programming interface (API).

The following examples show the statements needed to define input to the binder.

Object Modules, Load Modules and Program Objects
Primary input to the binder can be one or more object modules, load modules or
program objects. The modules are created and passed by a previous job step or
created in a separate job.

As a Member of a Partitioned Data Set or PDSE
You can use a module in a partitioned data set or PDSE as primary input to the
binder by specifying its data set name and member name on the SYSLIN DD state-
ment. In the following example, the member named TAXCOMP in the object
module library USER.LIBROUT is the primary input. USER.LIBROUT is a cata-
loged data set:

//SYSLIN DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

The library member is processed as if it were a sequential data set.

Members of partitioned data sets or PDSEs can be concatenated with other input
data sets, as follows:

//SYSLIN DD DSNAME=USER.OBJMOD,DISP=SHR,...

// DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

Library member TAXCOMP is concatenated to data set USER.OBJMOD.

44 DFSMS/MVS V1R4 Program Management

 Batch Input

Passed from a Previous Job Step
A module used as input can be passed from a previous job step to a binder job
step in the same job (for example, the output from the compiler is direct input to the
binder). In the following example, an object module that was created in a previous
job step (STEPA) is passed to the binder job step (STEPB):

//STEPA EXEC

//SYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS),...
...

//STEPB EXEC

//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The temporary data set name &&OBJECT, used in both job steps, identifies the
object module as the output of the language processor on the SYSGO DD state-
ment, and as the primary input to the binder on the SYSLIN DD statement.

Created in a Separate Job
If the only input to the binder is an object module from a previous job, the SYSLIN
DD statement contains the information needed to locate the object module. For
example:

//SYSLIN DD DSNAME=USER.OBJMOD,DISP=(OLD,DELETE)

 Control Statements
The primary input data set can consist solely of control statements. When the
primary input is control statements, input modules are specified on INCLUDE
control statements (see “Secondary (Included) Input” on page 46). The control
statements may be either placed in the input stream or stored in a data set.

In the following example, the primary input consists of control statements in the
input stream:

//SYSLIN DD \

Binder Control Statements

/\

In the next example, the primary input consists of control statements stored in the
member INCLUDES in the data set USER.CTLSTMTS:

//SYSLIN DD DSNAME=USER.CTLSTMTS(INCLUDES),DISP=SHR,...

In either case, the control statements can be any of those described in Chapter 6,
“Binder Control Statement Reference” on page 69.

Modules and Control Statements
The primary input to the binder can contain modules and control statements. The
object modules and control statements can be in the same data set or in different
data sets, but cannot be mixed in the same data set with load modules or program
objects.

If the modules and statements are in the same data set, this data set is specified in
the SYSLIN DD statement. If the modules and statements are in different data
sets, the data sets are concatenated. The binder accepts concatenated object
modules, load modules and program objects as primary input. However, the binder
does not support OpenEdition files as part of a concatenation. The control state-
ments can be defined either in the input stream or as a separate data set.

 Chapter 4. Defining Batch Input to the Binder 45

 Batch Input

Control Statements in the Input Stream
Control statements can be placed in the input stream and concatenated to an
object module data set, as follows:

//SYSLIN DD DSNAME=&&OBJECT,...

// DD \

Binder Control Statements

/\

Another method of handling control statements in the input stream is to use the
DDNAME parameter, as follows:

//SYSLIN DD DSNAME=&&OBJECT,...

// DD DDNAME=SYSIN

 .

 .

 .

//SYSIN DD \

Binder Control Statements

/\

Note: The binder cataloged procedures use DDNAME=SYSIN for the SYSLIN DD
statement to specify the primary input data set required.

Control Statements in a Separate Data Set
A separate data set that contains control statements can be concatenated to a data
set that contains an object module. Control statements for a frequently used proce-
dure (for example, a series of INCLUDE statements) can be stored permanently. In
the following example, the members of data set USER.CTLSTMTS contain binder
control statements. One of the members is concatenated to data set &&OBJECT.

//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE),...

// DD DSNAME=USER.CTLSTMTS(MEDIA),DISP=SHR,...

The control statements in the member named MEDIA of the data set
USER.CTLSTMTS are used to structure the resultant module.

Secondary (Included) Input
The INCLUDE control statement requests that the binder use additional data sets
as input. These can be any of the sequential data set types acceptable for primary
input.

In addition, INCLUDE may refer to private libraries rather than sequential files.
Concatenations must contain only libraries or sequential files (including library
members), not both.

The INCLUDE statement specifies the ddname of a DD statement that describes
the data set to be used as additional input. If the DD statement describes a library
(partitioned data set, PDSE, or OpenEdition directory) the INCLUDE statement also
contains the name of each member to be used. See “INCLUDE Statement” on
page 82 for the syntax of the INCLUDE statement.

When an INCLUDE control statement is encountered, the binder processes the
module or modules indicated. Figure 13 on page 47 shows the processing of an
INCLUDE statement. In the illustration, the primary input data set is a sequential
data set named OBJMOD which contains an INCLUDE statement. After processing

46 DFSMS/MVS V1R4 Program Management

 Batch Input

the included data set, the binder processes the next primary input item. The
arrows indicate the flow of processing.

If an included data set also contains an INCLUDE statement, that INCLUDE is
processed at the time it is encountered, effectively nesting includes. Any number of
nested INCLUDE statements are possible with the binder. Figure 13 demonstrates

| the flow of processing for single INCLUDE statements. Note that the binder returns
| to the Include module after processing the included module whereas the linkage
| editor does not.

 Primary Input

 Data Set OBJMOD

 ┌───────────────┐

 │ │ │

 │ │ │

 ├───────────────┤ │

 │ │ │

 │ │ │ Library OBJLIB

 ├───────────────┤ │ Member MODA

 │ │ │ ┌───5┌───────────────┐

 │ │ │ │ │ │ │

 ├───────────────┤ │ │ │ │ │

 │ │ │ │ ├───────────────┤ │

 │ │ │ │ │ │ │

 6 │ │ │ │

 │ ├───────────────┤ │

 Include OBJLIB (MODA) ──────────────────┘ │ │ │

 │ │ │

 │ │ ┌─────────────────┐ └───────────────┘ │

 │ │ │ │ │

 │ │ │ └───────────────────────┘

 ├───────────────┤ │

 │ │ │

 │ │ │

 ├───────────────┤ │

 │ │ 6

 │ │

 └───────────────┘

Figure 13. Processing of One INCLUDE Control Statement

Figure 14 on page 48 demonstrates the flow of processing for nested INCLUDE
statements.

 Chapter 4. Defining Batch Input to the Binder 47

 Batch Input

 Primary Input Sequential

 Data Set SYSLIN Data Set OBJMOD

 ┌───────────────┐ ┌─────5┌───────────────┐

 │ │ │ │ │ │ │

 │ │ │ │ │ │ │

 ├───────────────┤ │ │ ├───────────────┤ │

 │ │ │ │ │ │ │

 │ │ │ │ │ │ │

 ├───────────────┤ │ │ ├───────────────┤ │

 │ │ │ │ │ │ │

 │ │ │ │ │ │ 6

 │ │ │ │ Library OBJLIB

 │ │ │ │ Member MODA

 │ │ 6 │ ┌───────────────┐ │

│ Include OBJLIB (MODA)───────────────────5│ │ │

 │ │ │ │

 Include OBJMOD ────────────┘ │ │ ┌──────────────────┐ ├───────────────┤ │

 │ │ │ │ │ │ │

 │ │ ┌───────────┐ ├───────────────┤ │ │ │ │ │

 │ │ │ │ │ │ │ │ ├───────────────┤ │

 │ │ │ │ │ │ │ │ │ │ │

 ├───────────────┤ │ │ ├───────────────┤ │ │ │ │ │

 │ │ │ │ │ │ │ │ ├───────────────┤ │

 │ │ │ │ │ │ │ │ │ │ │

 └───────────────┘ │ │ └───────────────┘ │ │ │ │ │

 6 │ │ │ └───────────────┘ │

 │ │ │ │

 └─────────────────────────┘ └──────────────────────┘

Figure 14. Processing of Nested INCLUDE Control Statements

Including Sequential Data Sets
Sequential data sets containing object modules or control statements, or both, can
be specified by an INCLUDE control statement. In the following example, an
INCLUDE statement specifies the ddnames of two sequential data sets to be used
as additional input:

//ACCOUNTS DD DSNAME=PROJECT.ACCTROUT,DISP=SHR,...

//INVENTRY DD DSNAME=PROJECT.INVENTRY,DISP=SHR,...

//SYSLIN DD DSNAME=PROJECT.QTREND,...

// DD \

 INCLUDE ACCOUNTS,INVENTRY

/\

Each ddname could have been specified on a separate INCLUDE statement.
Using either method a DD statement must be specified for each ddname.

Another method of performing the preceding example is given in “Including Concat-
enated Data Sets” on page 49.

Including Library Members
Members of a partitioned data set, PDSE or an OpenEdition directory, can be spec-
ified on an INCLUDE control statement. The member or file name must be speci-
fied on the INCLUDE statement and not on the DD statement describing the data
set.

In the following example, one member name is specified on the INCLUDE state-
ment.

48 DFSMS/MVS V1R4 Program Management

 Batch Input

//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...

//SYSLIN DD DSNAME=&&CHECKS,DISP=(OLD,DELETE),...

// DD \

 INCLUDE PAYROLL(FICA)

/\

If more than one member of a library is to be included, the INCLUDE statement
specifies all the members to be used from that library. The member names appear
in parentheses following the ddname of the library, and must not appear on the DD
statement.

In the following example, an INCLUDE statement specifies two members from each
of two libraries to be used as additional input:

//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...

//ATTEND DD DSNAME=PROJECT.ATTROUTS,DISP=SHR,...

//SYSLIN DD \

 INCLUDE PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)

/\

Each library could have been specified on a separate INCLUDE statement. Using
either method a DD statement must be specified for each ddname.

Including Concatenated Data Sets
Several data sets can be designated as input with one INCLUDE statement that
specifies one ddname. Additional data sets are concatenated to the data set
described on the specified DD statement. You can concatenate data sets with
unlike characteristics, and the concatenated data sets can be any combination of
control statements, object modules, load modules libraries, or program object
libraries.

Note however, that the binder does not support concatenation of OpenEdition files.

Sequential Data Sets
In the following example, two sequential data sets are concatenated and then spec-
ified as input with one INCLUDE statement:

//CONCAT DD DSNAME=PROJECT.ACCTROUT,DISP=SHR,...

// DD DSNAME=PROJECT.INVENTRY,DISP=SHR,...

//SYSLIN DD DSNAME=PROJECT.SALES,DISP=OLD,...

// DD \

 INCLUDE CONCAT

/\

When the INCLUDE statement is recognized, the contents of the sequential data
sets PROJECT.ACCTROUT and PROJECT.INVENTRY are processed.

Library Data Sets
Members from more than one library can be designated as input with one ddname
on an INCLUDE statement. In this case, all the members are listed on the
INCLUDE statement. The partitioned data sets or PDSEs are concatenated using
the ddname from the INCLUDE statement:

 Chapter 4. Defining Batch Input to the Binder 49

 Batch Input

//CONCAT DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...

// DD DSNAME=PROJECT.ATTROUTS,DISP=SHR,...

//SYSLIN DD DSNAME=PROJECT.REPORT,DISP=OLD,...

// DD \

 INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)

/\

When the INCLUDE statement is read, the two libraries PROJECT.PAYROUTS and
PROJECT.ATTROUTS are searched for the four members and the members are
processed as input. Library directories are searched in the order of library appear-
ance in the JCL.

Resolving External References
You can request that the binder automatically search libraries to resolve external
references that were not resolved during primary and secondary input processing.
The binder can also process unresolved external references found in modules from
additional data sources.

Note: The following discussion of automatic library call services does not apply to
unresolved weak external references. They are left unresolved unless resolved to
external symbols defined by modules included in the process of resolving other
external references.

When you have requested automatic library call, the binder searches the directory
of the automatic call library for an entry that matches the unresolved external refer-
ence. When a match is found, the entire member is processed as input to the
binder.

Automatic library call can resolve an external reference when:

� The external reference is a member name or an alias of a module in the call
library, AND

� The external reference is defined as an external name in the external symbol
dictionary of a module contained in that member.

If an unresolved external reference is a member name or an alias in the library, but
is not an external name in that member, the member is processed but the external
reference remains unresolved unless it is subsequently defined.

When resolving external references, the binder searches the call library defined on
the SYSLIB DD statement. The call library can contain program objects, load
modules, or object modules and control statements (except INCLUDE, LIBRARY,
and NAME).

| The binder supports autocall from C370lib directories. A C/370 library is an object
| module library which contains a special member named @@DC370$. This special
| member is used as a replacement for the system directory in the prelinker autocall
| process to perform matches on long symbol names. In addition it preserves certain
| additional symbol attributes which cannot be saved in a standard MVS object library
| directory entry. Note that these attributes will be ignored by the binder.

| For each library in the SYSLIB concatenation containing the special member
| @@DC370$, the names in the special member take precedence over the regular
| directory entries for that library.

50 DFSMS/MVS V1R4 Program Management

 Batch Input

| For example given a SYSLIB concatenation

| PDSE

| PDS1 (with @@DC37ð$ member)

| PDS2

| the actual search order would be:

| PDSE directory names

| names from @@DC37ð$ in PDS1

| PDS1 directory names

| PDS2 directory names

| The binder also supports autocall from OpenEdition archive libraries. These
| archive libraries contain XOBJ modules and special directory information similar to
| that contained in C370lib object libraries.

Modules from libraries other than the SYSLIB call library can be searched by the
binder as directed by the LIBRARY control statement. The library specified in the
control statement is searched for member names that match specific external refer-
ences that are unresolved at the end of input processing. If any unresolved refer-
ences are found in the modules located by automatic library call, they are resolved
by another search of the library. Any external references not specified on a
LIBRARY control statement are resolved from the library defined on the SYSLIB
DD statement.

To prevent the binder from automatically searching call libraries, use either the
LIBRARY statement for selected unresolved external references, or the NCAL
option on the EXEC statement for all unresolved external references. See
“Directing External References to a Specific Library” on page 53 for a discussion of
the LIBRARY control statement and the NCAL option.

| Incremental Autocall
| The autocall phase may be invoked multiple times. Incremental autocall may be
| triggered at any point during primary or secondary input processing by the
| AUTOCALL control statement (or equivalent API call).

| The library name from the autocall request will be used in the same way as
| SYSLIB is used in standard (final) autocall. The following functions of final autocall
| will not take place during incremental autocall:

| � Processing of LIBRARY control statements or SETL API requests
| � RES processing (see section 4.3.1)
| � C Renaming logic
| � Invocation of the INTFVAL exit
| � Determination of Imports and Exports
| � Error messages relating to unresolved references.

Searching the Link Pack Area
When the binder is invoked for the loader function at entry IEWBLDGO, external
references may be resolved to module names in the system link pack area. The
link pack area is searched if the RES option is in effect. If you use the NORES
option, the binder suppresses the search.

 Chapter 4. Defining Batch Input to the Binder 51

 Batch Input

When the RES option is in effect, the library search order is:

1. Special libraries defined by the LIBRARY control statement.
2. System link pack area.
3. Automatic call libraries defined by the SYSLIB DD statement.

| Dynamic Symbol Resolution
| After final autocall processing of SYSLIB is complete, all DLL-type references that
| are not statically resolved are compared to IMPORT control statements. Symbols
| on IMPORT control statements are treated as definitions, and cause a matching
| unresolved symbol to be considered dynamically rather than statically resolved. A
| dynamically resolved symbol causes an entry in the binder class B-IMPEXP to be
| created. The binder does not issue unresolved symbol messages for symbols
| which are to be dynamically resolved.

Specifying Automatic Call Libraries
If automatic library call is requested, the call library must be a partitioned data set
or PDSE described by a DD statement with a ddname of SYSLIB. Details con-
cerning logical record lengths and record formats for SYSLIB libraries are given in
“SYSLIB DD Statement” on page 33. Call libraries can be concatenated.

 Call Libraries
Most compilers have their own automatic call libraries, which can contain
input/output, data conversion, or other special routines needed to complete a
module. Other products provide assembler and compiler preprocessors which gen-
erate calls to such routines in your program. You and your organization may
provide additional libraries. When an object module is created, the assembler or
compiler creates an external reference for these special routines. The appropriate
library must be defined when an object module produced by a particular assembler
or compiler is bound; the binder resolves the references from this library.

See the appropriate user's guide for the name of the call library.

In the following example, a Fortran object module created in STEPA is bound in
STEPB, and the Fortran automatic call library is used to resolve external
references:

//STEPA EXEC

//SYSOBJ DD DSNAME=&&OBJMOD,DISP=(NEW,PASS),...
...

//STEPB EXEC

//SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR

Concatenation of Call Libraries
Call libraries from various sources can be concatenated. When concatenating
libraries to define input to the binder, you can combine libraries containing object
modules, load modules, program objects, and control statements.

If object modules from different system processors are to be bound to form one
program object or load module, the call library for each must be defined. This is
accomplished by concatenating the additional call libraries to the library defined on
the SYSLIB DD statement. In the following example, a Fortran object module and

52 DFSMS/MVS V1R4 Program Management

 Batch Input

a COBOL object module are to be bound. The two call libraries are concatenated
as follows:

//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR

// DD DSNAME=SYS1.COBLIB,DISP=SHR

Libraries typically are cataloged. No unit or volume information is needed.

Directing External References to a Specific Library
The LIBRARY control statement can be used to direct the binder to search a library
other than that specified in the SYSLIB DD statement. This method resolves only
external references listed on the LIBRARY statement. All other unresolved external
references are resolved from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references that
should not be resolved from the automatic call library. The LIBRARY statement
specifies the duration of the unresolved condition: either during the current binder
job step, called restricted no-call; or during this or any subsequent binder job step,
called never-call.

Examples of each use of the LIBRARY statement follow. The syntax of the
LIBRARY statement is shown in “LIBRARY Statement” on page 85.

Additional Call Libraries
If the additional libraries are intended to resolve specific references, the LIBRARY
statement must contain the ddname of a DD statement describing the library. The
LIBRARY statement also contains, in parentheses, the external references to be
resolved from the library; that is, the names of the members to be used from the
library. If the unresolved external reference is not a member name in the specified
library, no attempt is made to resolve it from SYSLIB or LPA, and the reference
remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library have been
rewritten. The new modules are to be tested with the calling modules before they
replace the old modules. Because the binder would otherwise search the system
call library (which is needed for other modules), a LIBRARY statement is used, as
follows:

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

//TESTLIB DD DSNAME=USER.TESTLIB,DISP=SHR,...

//SYSLIN DD DSNAME=PROJECT.ACCTROUT,...

// DD \

 LIBRARY TESTLIB(DATE,TIME)

/\

Two external references, DATE and TIME, are resolved from the library described
on the TESTLIB DD statement. All other unresolved external references are
resolved from the library described on the SYSLIB DD statement.

Note: If a specified reference cannot be found in the designated library, it remains
unresolved. No attempt will be made to resolve it from SYSLIB.

 Chapter 4. Defining Batch Input to the Binder 53

 Batch Input

Preventing External References from Being Resolved
You can use the LIBRARY statement to specify those external references in the
output module for which there is to be no library search during the current binder
job step. To do this, specify the external references in parentheses without speci-
fying a ddname. The references remain unresolved, but the binder may mark the
module as executable, depending upon the value specified for the LET option.

For example, a program contains references to two large modules that are called
from the automatic call library. One of the modules has been tested and corrected;
the other is to be tested in this job step. Rather than execute the tested module
again, the restricted no-call option is used to prevent automatic library call from
processing the module as follows:

// EXEC PGM=IEWBLINK,PARM=LET

//SYSLIB DD DSNAME=PROJECT.PVTPROG,DISP=SHR
...

//SYSLIN DD DSNAME=&&PAYROL,...

// DD \

 LIBRARY (OVERTIME)

/\

As a result, the external reference to OVERTIME is not resolved.

 Never-Call Option
You can use the never-call option to specify external references that are not to be
resolved by automatic library call during this or any subsequent binder job step. To
do this, put an asterisk before the external references in parentheses. The refer-
ences remain unresolved but the binder marks the module as executable.

For example, a certain part of a program is never executed, but it contains an
external reference to a large module (CITYTAX) which is no longer used by this
program. The module is in a call library needed to resolve other references.
Rather than take up storage for a module that is never used, the never-call option
is specified, as follows:

// EXEC PGM=IEWBLINK,PARM=LET

//SYSLIB DD DSNAME=PROJECT.PVTPROG,DISP=SHR
...

//SYSLIN DD DSNAME=PROJECT.TAXROUT,DISP=OLD,...

// DD \

 LIBRARY \(CITYTAX)

/\

When program TAXROUT is bound, the external reference to CITYTAX is not
resolved. If the module is subsequently rebound, CITYTAX will remain unresolved
unless it is bound with another module that requires CITYTAX.

NCAL Option: Negating the Automatic Library Call
When the NCAL option is specified, no automatic library call occurs to resolve
external references that are unresolved after input processing. The NCAL option is
similar to the restricted no-call option on the LIBRARY statement, except that the
NCAL option negates automatic library call for all unresolved external references
and restricted no-call negates automatic library call for selected unresolved external
references. With NCAL, all external references that are unresolved after input proc-

54 DFSMS/MVS V1R4 Program Management

 Batch Input

essing is finished remain unresolved. The module is or is not marked executable
depending on the value specified for the LET option.

The NCAL option is a special processing parameter that is specified on the EXEC
statement as described in “CALL: Automatic Library Call Option” on page 108.

| Renaming
| Binder renaming logic occurs when all possible name resolution has been per-
| formed on the original names. It permits the conversion of long mixed case names
| from XOBJ or GOFF object modules to short uppercase names and will re-drive the
| autocall process. Renaming logic applies only to non-imported, renameable func-
| tion references which are still unresolved and consists of the following:

| 1. The RENAME control statement allows users to control the renaming of specific
| symbols, as they could with the prelinker.

| 2. Standard C/C++ library functions will be renamed to the names appearing in the
| SCEELKED static bind library. The mappings are those defined by module
| EDCRNLST. If the binder is not able to locate and load this module, an infor-
| mational message will be issued.

| 3. If UPCASE=YES is in effect, renaming will be performed approximately
| according to the rules used by the prelinker.

| See “UPCASE: UPCASE Option” on page 124 for more information.

 Chapter 4. Defining Batch Input to the Binder 55

 Batch Input

56 DFSMS/MVS V1R4 Program Management

 Editing Sections

Chapter 5. Editing a Section in Batch Mode

The binder can perform editing services either automatically or as directed by you
with control statements. These editing capabilities allow you to modify programs on
a section basis, so you can modify a section within a module without having to
recompile the entire source program.

The editing capabilities let you modify either an entire section or external symbols
within a section. Sections can be deleted, replaced, or arranged in sequence;
external symbols can be deleted or changed. See “External Symbols” on page 13
for an explanation of external symbols.

Any editing service is requested in reference to an input module. The resulting
output program module reflects the request; no actual change, deletion, or replace-
ment is made to the input module. The requested alterations are used to control
binder processing, as shown in Figure 15.

Note: This chapter refers to binder processing. These concepts apply equally to
linkage editor and batch loader processing unless noted otherwise in Appendix B,
“Using the Linkage Editor and Batch Loader” on page 261. The linkage editor and
batch loader do not process program objects.

Input Modules JCL and Control Statements Output Program Module

 MODA1 MODA1A2

 ┌──────────────┐ ─┐ . ┌──────────5┌───────────────┐

 │CSECTA │ │ . │ │CSECT1 │

 │ │ ├────┐ . │ │ │

│ │ │ │ //SYSLMOD DD DSN=PROJECT.NEWLIB(MODA1A2),... │ │

 └──────────────┘ ─┘ │ //MODATWO DD DSN=MODA2,... ├───────────────┤

 └────5//SYSLIN DD DSN=MODA1,... │CSECTA │

 MODA2 // DD \ │ │

 ┌──────────────┐ ─┐ ENTRY CSECT3 │ │

 │CSECT1 │ │ REPLACE CSECT2(CSECTA) ├───────────────┤

│ │ │ ┌────5 INCLUDE MODATWO │CSECT3 │

 │ │ │ │ . │ │

 ├──────────────┤ │ │ . │ │

 │CSECT2 │ │ │ . └───────────────┘

 │ │ ├────┘

 │ │ │

 ├──────────────┤ │

 │CSECT3 │ │

 │ │ │

 │ │ │

 └──────────────┘ ─┘

Figure 15. Editing a Module. This example illustrates how the ENTRY and REPLACE statements can be used to edit
a program module.

 Editing Conventions
When you request editing services, you should follow certain conventions to ensure
that the specified modification is processed correctly.

 Copyright IBM Corp. 1991, 1997 57

 Editing Sections

These conventions concern the following items:

� Entry points for the new module
� Placement of control statements
� Identical old and new symbols.

 Entry Points
Each time the binder reprocesses a program module, the entry point for the output
module should be specified in one of three ways:

� Through an ENTRY control statement

� Through an EP option when using the binder loader function

� Through an assembler- or compiler-produced END statement of an input object
module if one is present. If multiple such entry point nominations are encount-
ered, the first is used. The entry point specified on the END statement of one
object module may be defined in a different object module if it is specified as
an external reference in the first module.

The entry point assigned must be defined as an external name within the resulting
program object or load module. The ENTRY control statement takes precedence
over the EP option, which in turn takes precedence over the END statement.

Placement of Control Statements
The control statement (such as CHANGE or REPLACE) used to specify an editing
service must immediately precede either the module to be modified or the
INCLUDE statement that specifies the module. If an INCLUDE statement specifies
several modules, the CHANGE or REPLACE statement applies only to the first
module included.

Identical Old and New Symbols
The same symbol should not appear as both an old external symbol and a new
external symbol in one binder run. If a section is to be replaced by another section
with the same name, the binder handles this automatically (see “Automatic
Replacement” on page 60 for more information).

Changing External Symbols
You can change an external symbol to a new symbol while processing an input
module. External references and address constants within the module automat-
ically refer to the new symbol. External references from other modules to a
changed external symbol must be changed with separate control statements.

Both the old and the new symbols are specified on either a CHANGE control state-
ment or a REPLACE control statement. The use of the old symbol within the
module determines whether the new symbol becomes a section name, an entry
name, or an external reference.

58 DFSMS/MVS V1R4 Program Management

 Editing Sections

Using the CHANGE Statement
The CHANGE control statement changes a section name, a common section name,
an entry name, an external or weak external reference, or a pseudoregister.

The CHANGE statement must immediately precede either the input module that
contains the external symbol to be changed, or the INCLUDE statement that speci-
fies the input module. The scope of the CHANGE statement is the immediately
following module.

If a CHANGE statement appears in a data set included from an automatic call
library and is not immediately followed by an object module in the same data set,
the request for the change is ignored.

See “CHANGE Statement” on page 74 for the specific information on using the
CHANGE control statement.

Example of Changing External Symbols
In the following example, assume that SUBONE is defined as an external reference
in the input program module. A CHANGE statement is used to change the external
reference to NEWMOD as shown in Figure 16.

Input Modules JCL and Control Statements Output Program Module

 MAINROUT MAINROUT

 ┌──────────────┐ ─┐ ┌───────────────┐

 │BEGIN ENTRY │ │ │MAINEP ENTRY │

 │ . │ │ │ . │

 │ . │ │ . │ . │

 │ . │ │ . │ . │

 │CALL SUBONE │ │ . │CALL NEWMOD │

│ . │ │ //SYSLMOD DD DSN=PROJECT.PVTLIB,... │ . │

 │ . │ │ //SYSLIN DD \ │ . │

 │ . │ │ ENTRY MAINEP │ . │

 │CALL SUBONE │ │ CHANGE SUBONE(NEWMOD),BEGIN(MAINEP) │CALL NEWMOD │

│ . │ ├───────────────5INCLUDE SYSLMOD(MAINROUT) │ . │

 │ . │ │ NAME MAINROUT(R) │ . │

 │ . │ │ /\ │ . │

 ├──────────────┤ │ ├───────────────┤

 │ . │ │ │ . │

 │ . │ │ │ . │

 │ . │ │ │ . │

 │CALL SUBONE │ │ │CALL NEWMOD │

 │ . │ │ │ . │

 │ . │ │ │ . │

 │ . │ │ │ . │

 └──────────────┘ ─┘ └───────────────┘

Figure 16. Changing an External Reference and an Entry Point

In the program module MAINROUT, every reference to SUBONE is changed to
NEWMOD. The INCLUDE statement specifies the ddname SYSLMOD, allowing
the library to be used both as the input and the output module library.

More than one change can be specified on the same control statement. If, in the
same example, the entry point is also to be changed, the two changes can be
specified at once (see Figure 16).

 Chapter 5. Editing a Section in Batch Mode 59

 Editing Sections

Because the main entry point name is changed from BEGIN to MAINEP, you must
use the ENTRY statement to change the library directory entry for the module to
reflect the new name of the entry point.

 Replacing Sections
An entire section can be replaced with a new section. Sections can be replaced
either automatically or with a REPLACE control statement. Automatic replacement
acts upon all input modules; the REPLACE statement acts only upon the module
that follows it.

Notes:

1. Any CSECT identification records (IDR) associated with a particular section are
also replaced.

2. For assembler language programmers only : When some but not all sections
of a separately assembled module are to be replaced, the binder causes A-type
address constants that refer to a deleted symbol to be incorrectly resolved
unless the entry name is at the same displacement from the origin in both the
old and the new section. If all sections of a separately assembled module are
replaced, no restrictions apply.

 Automatic Replacement
Sections are automatically replaced if both the old and the new section have the
same name. The first of the identically named sections processed by the binder is
made a part of the output module. All subsequent sections with that name are
ignored; external references to identically named sections are resolved with respect
to the first one processed. Therefore, to cause automatic replacement, the new
section must have the same name as the section to be replaced, and must be
processed before the old section.

Warning: Automatic replacement applies to duplicate section names only. If
duplicate entry points exist in sections with different names, a REPLACE control
statement must be used to specify the entry point name.

Example 1: Object Module With Two Sections
An object module contains two sections, READ and WRITE; member INOUT of
library PROJECT.PVTLIB also contains a section WRITE.

//SYSLMOD DD DSNAME=PROJECT.PVTLIB,DISP=OLD

//SYSLIN DD \

Object Deck for READ

Object Deck for WRITE

 ENTRY READIN

 INCLUDE SYSLMOD(INOUT)

 NAME INOUT(R)

/\

The output module contains the new READ section, the replacement WRITE
section, and all remaining sections from INOUT.

60 DFSMS/MVS V1R4 Program Management

 Editing Sections

Example 2: Large Program Module With Many Sections
A large module named PAYROLL, originally written in COBOL, contains many
sections. Two sections, FICA and STATETAX, were recompiled and passed to the
binder job step in the &&OBJECT data set. Then, by including the &&OBJECT
data set before the program module PAYROLL (a member of the program library
PROJECT.LIB001), the modified sections automatically replace the identically
named sections. See Figure 17.

Input Modules JCL and Control Statements Output Program Module
 &&OBJECT

 ┌──────────────┐ ─┐

 │FICA │ │

 │(new) │ │

 │ │ │

 ├──────────────┤ ├────┐ LIBðð2

 │STATETAX │ │ │ (PAYROLL)

 │(new) │ │ │ ┌───────────────┐

 │ │ │ │ │FICA │

 └──────────────┘ ─┘ │ //SYSLMOD DD DSN=PROJECT.LIBðð2(PAYROLL),... │(new) │

 │ //SYSLIB DD DSN=SYS1.VSCLLIB,DISP=SHR │ │

┌┼────5//OLDLOAD DD DSN=PROJECT.LIBðð1,... ├───────────────┤

 LIBðð1 │└────5//SYSLIN DD DSN=&&OBJECT,DISP=(OLD,DELETE) │STATETAX │

 (PAYROLL) │ // DD \ │(new) │

 ┌──────────────┐ ─┐ │ INCLUDE OLDLOAD(PAYROLL) │ │

 │MAINROUT │ │ │ ENTRY INIT1 ├───────────────┤

 │ │ │ │ /\ │MAINROUT │

 │ │ │ │ │ │

 ├──────────────┤ │ │ │ │

 │OVERTIME │ │ │ ├───────────────┤

 │ │ │ │ │OVERTIME │

 │ │ │ │ │ │

 ├──────────────┤ │ │ │ │

 │FICA │ │ │ ├───────────────┤

 │(old) │ │ │ │FEDTAX │

 │ │ │ │ │ │

 ├──────────────┤ │ │ │ │

 │STATETAX │ │ │ ├───────────────┤

 │(old) │ │ │ │ILLACC │

 │ │ │ │ │ │

 ├──────────────┤ │───┘ │ │

 │FEDTAX │ │ ├───────────────┤

 │ │ │ │VAKTION │

 │ │ │ │ │

 ├──────────────┤ │ │ │

 │ILLACC │ │ ├───────────────┤

 │ │ │ │ . │

 │ │ │ │ . │

 ├──────────────┤ │ │ . │

 │VAKTION │ │ │ │

 │ │ │

 │ │ │

 ├──────────────┤ │

 │ . │ │

 │ . │ │

 │ . │ │

 │ │ │

 │ │ │

 ─┘

Figure 17. Automatic Replacement of Sections

The output module contains the modified FICA and STATETAX sections and the
rest of the sections from the old PAYROLL module. The main entry point is INIT1,
and the output module is placed in a library named PROJECT.LIB002. The
COBOL automatic call library is used to resolve any external references that might

 Chapter 5. Editing a Section in Batch Mode 61

 Editing Sections

be unresolved after the SYSLIN data sets are processed. The new module is
named PAYROLL because PAYROLL is specified as the member name on the
SYSLMOD DD statement and was not overidden by a NAME control statement.

Using the REPLACE Statement to Replace Sections and Named
Common Areas

The REPLACE statement is used to replace sections and named common areas
(also called common sections) by providing old and new section names. The name
of the old section appears first, followed by the name of the new section in paren-
theses.

The scope of the REPLACE statement is the immediately following module. The
REPLACE statement must precede either the input module that contains the
section to be replaced, or the INCLUDE statement that specifies the input module.
The replacing section can be either before or after the replaced section in the
binder input. If a REPLACE statement appears in a data set included from an
automatic call library and is not immediately followed by an object module in the
same data set, the request is ignored.

An external reference to the old section (or area) from within the same input
module is resolved to the new section. An external reference to the old section
from any other module becomes an unresolved external reference unless one of
the following occurs:

� The external reference to the old section is changed to the new section with a
separate CHANGE control statement.

� The same entry name appears in the new section or in some other section in
the binder input.

In the following example, the REPLACE statement is used to replace one section
with another of a different name. Assume that the old section SEARCH is in library
member TBLESRCH, and that the new section BINSRCH is in the data set
&&OBJECT, which was passed from a previous step as shown in Figure 18 on
page 63.

62 DFSMS/MVS V1R4 Program Management

 Editing Sections

Input Modules JCL and Control Statements Output Program Module

 &&OBJECT .

 ┌──────────────┐ ─┐ .

 │BINSRCH │ │ .

│ │ │ //SYSLMOD DD DSNAME=USER.SRCHRTN,DISP=OLD

 │ │ ├─────────5//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

 │ │ │ // DD \

 │ │ │ ENTRY READIN

 │ │ │ REPLACE SEARCH(BINSRCH) TBLESRCH

 └──────────────┘ ─┘ ┌─────5INCLUDE SYSLMOD(TBLESRCH) ┌───────────────┐

 │ NAME TBLESRCH(R) │READIN ENTRY │

 │ /\ │ . │

 TBLESRCH │ │ . │

 ┌──────────────┐ ─┐ │ │ . │

 │READIN ENTRY │ │ │ │ │

 │ . │ │ │ │CALL BINSRCH │

 │ . │ │ │ │ . │

 │ . │ │ │ │ . │

 │CALL SEARCH │ ├─────┘ │ . │

 │ . │ │ ├───────────────┤

 │ . │ │ │BINSRCH │

 │ . │ │ │ │

 ├──────────────┤ │ │ │

 │SEARCH │ │ │ │

 │ │ │ │ │

 │ │ │ └───────────────┘

 │ │ │

 │ │ │

 │ │ │

 └──────────────┘ ─┘

Figure 18. Replacing a Section with the REPLACE Control Statement

The output module contains BINSRCH instead of SEARCH; any references to
SEARCH within the module refer to BINSRCH. Any external references to
SEARCH from other modules will not be resolved to BINSRCH.

See “REPLACE Statement” on page 95 for more information on using the
REPLACE statement.

Deleting External Symbols
The REPLACE statement can be used to delete an external symbol. The external
symbol may be a named section, a named common area, an entry point, a strong
or weak external reference, or a pseudoregister. The REPLACE statement must
immediately precede either the module in the input data set that contains the
external symbol to be deleted or the INCLUDE statement in the job stream that
specifies the module. Only one symbol appears on the REPLACE statement; the
appropriate deletion is made depending on how the symbol is defined in the
module.

If the symbol is a section name, the entire section is deleted. The section name is
deleted from the external symbol dictionary only if no address constants refer to the
name from within the same input module. If an address constant does refer to it,
the section name is changed to an external reference. Any CSECT identification
data associated with that section is also deleted.

 Chapter 5. Editing a Section in Batch Mode 63

 Editing Sections

The preceding is also true of an entry name to be deleted. Any references to it
from within the input module cause the entry name to be changed to an external
reference.

For external references and pseudoregisters, the symbol is deleted only if no RLD
contains references to the ESD entry to be deleted.

These editor-supplied external references, unless resolved with other input
modules, cause the binder to attempt to resolve them from the automatic call
library. Also, the deletion of an external symbol in an input module may cause
external references from other input modules to be unresolved. Either condition
can cause the output module to be marked not executable.

If you delete a section that contains any unresolved external references, those ref-
erences are removed from the external symbol dictionary.

In the example shown in Figure 19, the section CODER is deleted. If no address
constants refer to CODER from other sections in the module, the section name is
also deleted. If address constants refer to CODER, the name is retained as an
external reference.

See “REPLACE Statement” on page 95 for more information on using the
REPLACE statement.

Input Modules JCL and Control Statements Output Program Module

 CODEROUT .

 ┌──────────────┐ ─┐ . CODEROUT

 │ENCODE │ │ . ┌───────────────┐

│ │ │ //SYSLMOD DD DSN=PROJECT.PVTLIB,DISP=OLD │ENCODE │

 │ │ │ //SYSLIN DD \ │ │

 │ │ │ ENTRY START1 │ │

 ├──────────────┤ │ REPLACE CODER │ │

│CODER │ ├───────────5INCLUDE SYSLMOD(CODEROUT) ├───────────────┤

 │ │ │ NAME CODEROUT(R) │DECODE │

 │ │ │ /\ │ │

 │ │ │ │ │

 ├──────────────┤ │ │ │

 │DECODE │ │ └───────────────┘

 │ │ │

 │ │ │

 │ │ │

 └──────────────┘ ─┘

Figure 19. Deleting a Section

Ordering Sections or Named Common Areas
The sequence of sections or named common areas in an output module can be
specified by using the ORDER control statement.

Normally, the order that sections are received during input processing are pre-
served in the resulting module. Common areas are placed at the end. You can
change the section order by coding one or more ORDER control statements.

64 DFSMS/MVS V1R4 Program Management

 Editing Sections

Individual sections or named common areas are arranged in the output module
according to the sequence in which they appear on the ORDER control statement.
Multiple ORDER control statements can be used in a job step. The sequence of
the ORDER statements determines the sequence of the sections or named
common areas in the load module or program object.

Any sections or named common areas that are not specified on ORDER state-
ments appear last in the output load module in their original sequence. If a section
or named common area is changed by a CHANGE or REPLACE control statement,
the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the sequence of
five of the six sections in an output module. A REPLACE statement is used to
replace the old section, SESECTA, with the new section, CSECTA, from the data
set &&OBJECT, which was passed from a previous step. Assume that the sections
to be ordered are found in library member MAINROOT shown in Figure 20 on
page 66.

In the load module MAINROOT, the sections MAINEP, SEGMT1, SEG2, CSECTA,
and CSECTB are rearranged in the output load module according to the sequence
specified in the ORDER statements. A REPLACE statement is used to replace
section SESECTA with section CSECTA from data set &&OBJECT, which was
passed from a previous step. The ORDER statement refers to the new section
CSECTA. Section LASTEP appears after the other sections in the output module,

| because it was not included in the ORDER statement operands. The order control
| statement cannot be used to order parts.

 Chapter 5. Editing a Section in Batch Mode 65

 Editing Sections

Input Modules JCL and Control Statements Output Program Module

 &&OBJECT MAINROOT

 ┌───────────┐ ─┐ ðKB┌────────────┐

 │CSECTA │ │ │MAINEP │

 │ │ ├───┐ │ │

 │ │ │ │ ├────────────┤

 └───────────┘ ─┘ │ │SEGMT1 │

 │ │ │

 MAINROOT │ │ │

 ┌───────────┐ ─┐ │ //SYSLMOD DD DSNAME=PROJECT.PVTLIB,DISP=OLD ├────────────┤

│CSECTB │ │ └────5//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) │SEG2 │

├───────────┤ │ // DD \ │ │

 │SESECTA │ │ ORDER MAINEP(P),SEGMT1,SEG2 ├────────────┤

 │ │ │ REPLACE SESECTA(CSECTA) │CSECTA │

 │ │ │ ORDER CSECTA,CSECTB(P) │ │

 ├───────────┤ │ ┌────5 INCLUDE SYSLMOD(MAINROOT) │ │

 │MAINEP │ │ │ NAME MAINROOT(R) ├────────────┤

 │ │ │ │ /\ │Empty space │

 ├───────────┤ ├───┘ 4KB├────────────┤

 │LASTEP │ │ │CSECTB │

 │ │ │ ├────────────┤

 ├───────────┤ │ │LASTEP │

 │SEGMT1 │ │ │ │

 │ │ │ └────────────┘

 │ │ │

 ├───────────┤ │

 │SEG2 │ │

 │ │ │

 └───────────┘ ─┘

Figure 20. Ordering Sections

Note that empty space is inserted in the module before CSECTB. This is done to
ensure page alignment for CSECTB as specified by the “(P)” operand on the
ORDER control statement (this is discussed in “Aligning Sections or Named
Common Areas on Page Boundaries”).

See “ORDER Statement” on page 90 for specific information on using the ORDER
statement.

Aligning Sections or Named Common Areas on Page Boundaries
You can use either the ORDER statement or the PAGE statement to place a
section or named common area on a page boundary. This allows you to operate
with a lower paging rate, making more efficient use of real storage.

The section or common area to be aligned is named on either the PAGE statement
or the ORDER statement with the P operand. If any sections in the module are to
be page aligned the module is loaded on a page boundary.

In the following example, the sections RAREUSE and MAINRT are aligned on page
boundaries by PAGE and ORDER control statements. Sections MAINRT,
CSECTA, and SESECT1 are sequenced by the ORDER control statement.
Assume that each section is 3KB in length as shown in Figure 21 on page 67.

66 DFSMS/MVS V1R4 Program Management

 Editing Sections

The binder places the sections MAINRT and RAREUSE on page boundaries.
Sections MAINRT, CSECTA, and SESECT1 are sequenced as specified in the
ORDER statement. RAREUSE, while placed on a page boundary, appears after
the section s specified in the ORDER statement because it was not specified on
the ORDER statement.

Input Modules JCL and Control Statements Output Program Module
 MAINROOT MAINROOT

┌───────────┐ //SYSLMOD DD DSN=USER.PRGLIB,DISP=SHR ðKB┌───────────┐

 │CSECTA │ //SYSLIN DD \ │MAINRT │

 │ │ PAGE RAREUSE │ │

 │ │ ORDER MAINRT(P),CSECTA,SESECT1 │ │

 │ │ INCLUDE SYSLMOD(MAINROOT) │ │

 ├───────────┤ NAME MAINROOT(R) 3KB├───────────┤

 │RAREUSE │ /\ │CSECTA │

 │ │ │ │

 │ │ │ │

 │ │ │ │

 ├───────────┤ 6KB├───────────┤

 │SESECT1 │ │SESECT1 │

 │ │ │ │

 │ │ │ │

 │ │ │ │

 ├───────────┤ 9KB├───────────┤

 │BOTTOM │ │ │

 │ │ │Empty space│

 │ │ │ │

 │ │ │ │

 ├───────────┤ 12KB├───────────┤

 │MAINRT │ │RAREUSE │

 │ │ │ │

 │ │ │ │

 │ │ │ │

 └───────────┘ ├───────────┤

 │BOTTOM │

 │ │

 │ │

 │ │

 └───────────┘

Figure 21. Aligning Sections on Page Boundaries

For more information on using these control statements, see “ORDER Statement”
on page 90 and “PAGE Statement” on page 93.

 Chapter 5. Editing a Section in Batch Mode 67

 Editing Sections

68 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

Chapter 6. Binder Control Statement Reference

You provide control statements to the binder to specify editing operations and iden-
tify additional input. You can provide entry and module names and specify the
authorization code of a program module.

This chapter summarizes the binder control statements. Statement descriptions are
in alphabetical order, and include the purpose, syntax, placement in the input
stream, and examples.

Before using these control statements, you should also be familiar with the syntax
conventions described in “Binder Syntax Conventions.”

Note: This chapter refers to binder processing. These concepts apply equally to
linkage editor and batch loader processing unless noted otherwise in Appendix B,
“Using the Linkage Editor and Batch Loader” on page 261. The linkage editor and
batch loader cannot process program objects.

Binder Syntax Conventions
Each binder control statement specifies an operation and one or more operands.
Nothing must be written preceding the operation, which must begin in or after
column 2. The operation must be separated from the operand by one or more
blanks, with the exception of the IMPORT, RENAME, and IDENTIFY statements).
Blanks cannot be embedded within the operand field; see “Rules for Comments” on
page 71.

| Control statements are specified in 80-byte lines. A control statement can be con-
| tinued on as many lines as necessary. However, the control statement keyword

must be entirely on the first line and the operands must begin on the first line. A
control statement may be continued in one of the following ways:

1. Terminate an operand at a comma followed by a blank. The comma must be
in column 71 or earlier. Continuation lines may begin anywhere after column 1.
Any leading blanks are discarded.

2. If the operand field goes to column 71 (with no embedded blanks) and column
72 is non-blank, then the next line is treated as a continuation line. As in 1, the
continuation line may begin anywhere after column 1 and any leading blanks

| are discarded. Columns 73 through 80 of each line are reserved for sequence
| numbers, which are not processed by the binder.

3. An operand enclosed in single quotes can be continued. The binder searches
as many records as necessary until it finds the ending quote. The full operand
is reconstructed by concatenating the fragments starting with column 2 of each
line. In this case, the continuation of the operand must start in column 2, or the
operand is considered to have embedded blanks and is truncated at the first
blank. You can continue coding additional operands as usual following the
ending quote.

Most binder control statements require various symbols or names to be specified as
operands. Unless otherwise noted, all such names and symbols must be 1024
bytes or less and consist of EBCDIC characters within the range of X'41' through
X'FE' plus the double byte character set (DBCS) SO/SI control characters X'0E'

 Copyright IBM Corp. 1991, 1997 69

 Control Statement Reference

and X'0F'. It is strongly recommended that all such names consist of displayable
characters only and that they are enclosed by single quotation marks if they contain
other than alphanumeric or national characters. DDnames, member names, and
alias names must conform to the JCL coding rules for those parameters.

You may enclose any symbol except binder-defined keywords with single quotation
marks. If you wish to use commas or parentheses in a symbol in a control state-
ment, you must enclose that symbol in single quotation marks. A single quotation
mark embedded in a quoted string must be coded as two consecutive quotation
marks. Only complete symbols may be enclosed in single quotes. Characters
within quoted strings will not be folded to upper case, regardless of the value of the
CASE option. A quoted string with no closing quote continues in column 2 of the
next line.

A number of metasymbols dealing with names and program symbols have been
used in the control statement syntax diagrams in this chapter. These metasymbols
include the following:

� symbol, newsymbol. A user-assigned name with a maximum length of 1024
bytes and consisting only of characters from the binder's character set,
described above.

� externalsymbol, external reference. Those symbols which are or will be defined
in the External Symbol Dictionary (ESD). These include entry names defined
by a Label Definition (LD), section names which are implied entry names,
external references (ER) and part references (PR), also called pseudoregisters.

� sectionname. Those symbols which name sections in the module. Section is a
generic term encompassing control sections, private code sections and
common areas. Blank common and private code sections may not be named
on binder control statements.

� directoryname. Those symbols which appear or will appear in the directory of a
named library structure. Directory names include member names, aliases and
unqualified OpenEdition file names, and have length restrictions imposed by the
underlying file system:

 File System Member Name Alias Name

 ------------ ----------- ----------

 PDS Library 8 8

 PDSE Library 8 1ð24

 OpenEdition Directory 255 64

� ddname. The name coded in the label field of a dd-statement. Ddnames are
limited to eight bytes.

You may include blank lines between control statements but not within a statement.
A blank line indicates an end to any statement.

For more information on syntax and notational conventions, see “Notational
Conventions” on page xxvi.

70 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

 Syntax Errors
If a syntax error is detected while processing a control statement, the remainder of
the statement is skipped and not processed. However, any operands in the portion
of the statement preceding the error is processed.

Rules for Comments
Placing an asterisk (*) in column 1 of a control statement causes the binder to treat
that line as a comment. The content of column 72 is ignored on a comment line.
You can include comment lines anywhere in the control statement input. You can
also include comments on a control statement line; anything at the end of a control
statement line separated from the operands by one or more blanks will be treated
as a comment. Comments are not processed by the binder but can be printed.

A line is also treated as a comment if the previous statement ends with a blank but
has a non-blank character in column 72.

 Placement Information
Binder control statements are placed before, between, or after object modules.
They can be grouped, but they cannot be placed within a module. However, spe-
cific placement restrictions may be imposed by the nature of the services being
requested by the control statement. Any placement restrictions are noted.

If a function can be specified either on a control statement or as an option in the
PARM field of the EXEC statement, the control statement specification takes pre-
cedence.

 ALIAS Statement
The ALIAS statement specifies one or more additional names for the primary entry
point, and can also specify names of alternate entry points.

Note: Alternate entry points are not supported for program objects that reside in
OpenEdition files. If an OpenEdition path name is specified, that name becomes a
true alias of the primary entry point.

The binder does not place a limit on the number of alias names that may be speci-
fied on an ALIAS statement or on separate ALIAS statements for one library
member. These names are entered in the directory of the partitioned data set or
PDSE in addition to the member name. If the symbol specified as the alias has
appeared on an earlier ALIAS control statement, the new specification replaces the
earlier one.

Note: If the module contains multiple text classes, all entry points must be
defined in the same class.

The syntax of the ALIAS statement is:

ALIAS directory name[(externalsymbol)]
[,directory name[(externalsymbol)]]...

 Chapter 6. Binder Control Statement Reference 71

 Control Statement Reference

directory name
specifies an alternate name for the program object or load module. The
symbol may or may not be the name of an external entry point within the
program.

When the program is executed using the alias name, execution begins at the
entry point associated with the alias. The entry point is determined according
to the following rules:

1. If an externalsymbol is specified as an entry point (see below) for the alias,
execution begins at that entry point.

2. If the alias symbol matches an entry name within the program, execution
begins at that entry point.

3. If the alias symbol does not match an entry name within the program, exe-
cution begins at the main entry point.

externalsymbol
specifies the name of the entry point to be used when the program is executed
using the associated alias. If the external symbol is the name of an entry point
within the program, that name is used as the entry point for the alias. If the
external symbol is not an entry point name, but another external name such as
a pseudoregister or an unresolved external reference, the main entry point is
used as the entry point for the alias. If the symbol you specify is not defined in
the program, the alias is not created.

Placement: An ALIAS statement can be placed before, between, or after object
modules or other control statements. It must precede a NAME statement used to
specify the member name, if one is present.

Notes:

1. In an overlay program, an external name specified by the ALIAS statement
must be in the root segment. In a multi-text class program object, an alternate
entry point specified by an ALIAS statement must be defined in the same class
as the primary entry point.

2. When a program module is reprocessed, all ALIAS statements should be
respecified so that the directory is updated. Otherwise, for replaced load
modules, the aliases remain in the directory and point to the old library
member. When a program object is replaced, the aliases are deleted.

3. Each alias name that is specified must be unique within the library. If the spec-
ified alias name matches an existing member name within the library, the alias
will be rejected. If the specified alias name matches an existing alias name in
the library and the replace option (R) was not specified, the alias will be
rejected. If replace was specified, the new alias name will replace the existing
one.

4. To avoid name conflicts, delete obsolete alias names from the program library
directory.

5. You may execute a program object that resides in an OpenEdition file by speci-
| fying an alias name. However, execution will always begin at the main entry
| point. By using the binder call interface, it is possible to copy the program
| module and its aliases to a partitioned data set or a PDSE. The alias informa-
| tion which was saved in the program object will be used to create aliases for

72 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

| the copied module as either true aliases or alternate entry points, in accord-
| ance with the rules documented here.

 Example
An output module, ROUT1, is to be assigned an alternate entry point, CODE1.
CODE1 can also be invoked by an alias, CODE2. In addition, calling modules
have been written using both ROUT1 and ROUTONE to refer to the output module.
Rather than correct the calling modules, an alternate library member name is also
assigned.

 ALIAS CODE1,CODE2(CODE1),ROUTONE

 NAME ROUT1

Because CODE1 is an entry name in the output module, execution begins at the
point referred to when this name is used to call the module. The same entry point
will be selected when CODE2 is called, since CODE2 is an alias for the CODE1
entry point. The modules that call the output module with the name ROUTONE
now correctly refer to ROUT1 as its main entry point. The names CODE1, CODE2,
and ROUTONE appear in the library directory along with ROUT1.

| AUTOCALL Statement
| The AUTOCALL control statement prompts the binder to perform incremental (or
| immediate) autocall using only the given library as the search library to resolve
| symbol references. See “Resolving External References” on page 50 for more
| information on autocall.

| The syntax of the AUTOCALL statement is:

| library
| specifies either the name of a DD statement that describes a PDSE program
| object library or the path for an OpenEdition file. In the first case, the length is
| limited to eight bytes, whereas the limit for the second case is 1024 bytes.

| Placement: The AUTOCALL control statement may be placed anywhere in the job
| stream or input data set.

| Notes:

| 1. This statement may be specified at any time during primary and secondary
| input to the binder. However, if there are any references left unresolved after
| any number of AUTOCALL control statements, the binder does not diagnose
| them.

| 2. If no autocall (NCAL or CALL=NO) is in effect, incremental autocall is not per-
| formed. See Chapter 7, “Binder Options Reference” on page 101 for informa-
| tion on the CALL and NCAL option.

| 3. The AUTOCALL statement is the functional equivalent of the following form of
| the LIBRARY control statement. This form is supported only by the prelinker.
| (see “Binder Extensions supporting the Language Environment for MVS
| Prelinker Functions” on page 26).

| LIBRARY ddname

| AUTOCALL| library

 Chapter 6. Binder Control Statement Reference 73

 Control Statement Reference

| 4. No symbol renaming is done when the binder attempts to resolve references
| during immediate autocall.

| Example
| The following example shows how the AUTOCALL statement is invoked to imme-
| diately resolve references made available during a recent INCLUDE.

| //OBJMOD DD DSNAME=PROJECT.TAXES,DISP=(OLD,DELETE),...

| //LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD,...

| //SYSLIB DD DSNAME=PROJECT.MAIN.LOADLIB,DISP=OLD,...

| //SYSLIN DD \

| INCLUDE OBJMOD

| AUTOCALL LOADMOD
| .| .| .

| /\

| In the example, OBJMOD is included first, followed by an autocall request which
| uses the LOADMOD module library to resolve references. At this point, no attempt
| is made to resolve references using SYSLIB, and unresolved references are not
| diagnosed. The binder waits until all input has been specified to do a final autocall.
| At that time, it attempts to resolve any outstanding references by searching
| SYSLIB. After final autocall, if any references remain unresolved, the binder states
| them in its messages.

 CHANGE Statement
The CHANGE statement causes an external symbol to be replaced by the symbol
in parentheses following the external symbol. The external symbol to be changed
can be a control section name, a common area name, an entry name, an external
reference, or a pseudoregister. More than one such substitution may be specified
in one CHANGE statement. The syntax of the CHANGE statement is:

externalsymbol
is the external symbol that is to be changed.

newsymbol
is the name to which the external symbol is to be changed.

Placement: In the job stream or input data set, the CHANGE control statement
must be placed before either the module containing the external symbol to be
changed, or the INCLUDE control statement specifying the module. The scope of
the CHANGE statement is across the next object module, load module, or program
object.

Notes:

1. External references from other modules to a changed control section name or
entry name remain unresolved unless further action is taken.

2. If both the original name and the new name specified for the external symbol
are already defined in the output module, the new name is deleted from the
module before the original name is changed. If the new name defines a control

CHANGE externalsymbol(newsymbol)
[,externalsymbol(newsymbol)]...

74 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

section, the original section with the same name will be deleted. The results
received from the binder under this condition vary from the results received
from the linkage editor.

3. When a REPLACE statement that deletes a control section is followed by a
CHANGE statement with the same control section name, the results are unpre-
dictable.

4. If a CHANGE statement is not followed by any included module, the binder
issues a diagnostic message and ignores the change.

5. If a CHANGE statement appears in a module included from an automatic call
library, it will be ignored if it is not followed by a module from the same
member.

 Examples
Change Control Section Name: Example 1: Two control sections in different
modules have the name TAXROUT. Because both modules are to be bound
together, one of the control section names must be changed. The module to be
changed is defined with a DD statement named OBJMOD. The control section
name could be changed as follows:

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=OLD,...

//SYSLIN DD \

 CHANGE TAXROUT(STATETAX)

 INCLUDE OBJMOD
 . . .

/\

As a result, the name of control section TAXROUT in module TAXES is changed to
STATETAX.

Change Module References: Example 2: A program object or load module con-
tains references to TAXROUT that must be changed to STATETAX. This module
is defined with a DD statement named LOADMOD. The external references could
be changed at the same time the control section name is changed:

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=(OLD,DELETE),...

//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD,...

//SYSLIN DD \

 CHANGE TAXROUT(STATETAX)

 INCLUDE OBJMOD

 CHANGE TAXROUT(STATETAX)

 INCLUDE LOADMOD(INVENTRY)
 . . .

/\

As a result, control section name TAXROUT in module TAXES and external refer-
ence TAXROUT in module INVENTRY are both changed to STATETAX.

 ENTRY Statement
The ENTRY statement specifies the symbolic name of the first instruction to be
executed when the program is called by its module (member) name for execution
or by an alias that does not match an executable external symbol. An ENTRY
statement should be used whenever a module is reprocessed by the binder. The
syntax of the ENTRY statement is:

 Chapter 6. Binder Control Statement Reference 75

 Control Statement Reference

externalsymbol
is defined as either a control section name or an entry name in an input
module.

Placement: An ENTRY statement can be placed before, between, or after object
modules or other control statements. It must precede the NAME statement for the
module, if one is present.

Notes:

1. If you provide more than one ENTRY statement, the main entry point specified
on the last statement is used.

2. In an overlay program, the first instruction to be executed must be in the root
segment.

3. The external name specified must be a name associated with an instruction,
not data, if the module is to be executed.

4. An entry point assigned by the ENTRY control statement overrides an entry
point specified on an END statement of an object module. It also overrides an
entry point specified as an EP option in the PARM field of an EXEC statement
if you are using IEWBLOAD.

5. If you do not use an ENTRY statement, the entry point is the one specified on
the first object module END record processed that specifies an entry point. If
no entry point is specified on an ENTRY statement, END record, or EP option
for IEWBLOAD, the entry point is the first byte of the first control section in the
program. If the module contains multiple text classes and an entry point is not
specified, the results are unpredictable.

6. If the module contains multiple text classes then the primary and all alternate
entry points must be defined in the same class.

ENTRY externalsymbol

 Example
In the following example, the main entry point is INIT1:

//LOADLIB DD DSNAME=PROJECT.LOADLIB,DISP=OLD

//SYSLIN DD \

 ENTRY INIT1

 INCLUDE LOADLIB(READ,WRITE)

/\

INIT1 must be either a control section name or an entry name in one of the
program objects or load modules named READ or WRITE.

 EXPAND Statement
The EXPAND statement lengthens control sections or named common areas by a
specified number of bytes. The syntax of the EXPAND statement is:

EXPAND sectionname(length[,classname])
[,sectionname(length[,classname])]...

76 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

sectionname
symbolic name of a common area or control section whose length is to be
increased.

length
the decimal number of bytes to be added to the length of a common area. The
length of the section can be expanded to reach the maximum text size of a
program object or load module. The maximum text size of a program object is
1 GB; the maximum text size of a load module is 16 MB. Binary zeros are
used to initialize an expanded control section.

classname
the name of the text class to be expanded. Classname is not valid when

| COMPAT=LKED or COMPAT=PM1. Classname defaults to B_TEXT if it is not
| specified.

A message indicates the number of bytes added to the control section and the
offset, relative to the start of the control section, at which the expansion begins.
The effective length of the expansion is given in hexadecimal and may be greater
than the specified length if, after the specified expansion, padding bytes must be
added for alignment of the next control section or named common area.

Placement: An EXPAND statement can be placed before, between, or after other
control statements or object modules. However, the statement must follow the
module containing the control section or named common area to which it refers. If
the control section or named common area is entered as the result of an INCLUDE
statement, the EXPAND statement can appear anywhere between the INCLUDE
and NAME statements.

Note:

EXPAND should be used with caution so as not to increase the length of a program
beyond its own design limitations. For example, if space is added to a control
section beyond the range of its base register addressability, that space is unusable
unless you make other changes to the program to allow it to address the extra
space.

 Example
In this example, EXPAND statements add a 250-byte patch area (initialized to
zeros) at the end of control section CSECT1 and increase the length of named
common area COM1 by 400 bytes.

//LKED EXEC PGM=IEWBLINK

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSNAME=PROJECT.PROGLIB,DISP=OLD

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS)

// DD \

 EXPAND CSECT1(25ð)

 EXPAND COM1(4ðð)

 NAME MOD1(R)

/\

 Chapter 6. Binder Control Statement Reference 77

 Control Statement Reference

 IDENTIFY Statement
The IDENTIFY statement specifies any data you supply be entered into the CSECT
identification records (IDR) for a particular control section. The statement can be
used either to supply descriptive data for a control section or to provide a means of
associating system-supplied data with executable code.

78 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

The syntax of the IDENTIFY statement is:

sectionname
is the symbolic name of the control section to be identified.

data
specifies up to 80 EBCDIC characters of identifying information for program
objects, and up to 40 characters for load modules. You may supply any infor-
mation desired for identification purposes.

| Placement: An IDENTIFY statement must follow the module containing the control
| section to be identified or the INCLUDE statement specifying the module.

The syntax rules for the operand field are:

1. Blanks are not allowed between the CSECT name and the left parenthesis.

2. No blanks or characters are allowed between the left parenthesis and the
leading single quotation mark nor between the trailing single quotation mark
and the right parenthesis.

3. The data field consists of from 1 to 80 characters for program objects and 1 to
40 characters for load modules; therefore, a null entry must be represented,
minimally, by a single blank.

4. Blanks may appear between the leading single quotation mark and the trailing
single quotation mark. Each blank counts as 1 character toward the character
limit.

5. A single quotation mark between the leading quotation mark and the trailing
quotation mark is represented by 2 consecutive quotation marks. The pair of
quotation marks counts as 1 character toward the character limit.

6. The IDENTIFY statement can be continued. If you are using the binder, the
data characters end in column 71 and continue at column 2 on the next line.

7. If a leading quotation mark is found, all characters are read in until a trailing
quotation mark is found or the character limit is reached.

8. A blank following a comma that terminates an operand also terminates the
operand field for that record.

9. Double byte character set (DBCS) characters can be included within the
descriptive data. DBCS characters must be delimited by the shift-out (X'0E')
and shift-in (X'0F') characters. The shift-out and shift-in characters and the
delimited DBCS characters count as one or two bytes, respectively, toward the
total length of the string.

You can provide more than one IDENTIFY statement for each control section name
when you are creating a program object. However, if you are creating a load
module, you can provide only one IDENTIFY statement. If you provide more than
one IDENTIFY statement per control section for load modules, the information on

| only the last IDENTIFY statement is saved. The contents of each IDENTIFY state-
| ment will be saved in a seperate record in the program object.

IDENTIFY sectionname('data')[,sectionname('data')]...

 Chapter 6. Binder Control Statement Reference 79

 Control Statement Reference

 Example
In this example, IDENTIFY statements are used to identify the source level of a
control section, a PTF application to a control section, and the functions of several
control sections.

//LKED EXEC PGM=IEWBLINK

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD

//OLDMOD DD DSNAME=PROJECT.OLD.LOADLIB,DISP=OLD

//PTFMOD DD DSNAME=PROJECT.PTF.OBJECT,DISP=OLD

//SYSLIN DD \

(input object deck for a control section named FORT)

 IDENTIFY FORT('LEVEL ð3')

 INCLUDE PTFMOD(CSECT4)

 IDENTIFY CSECT4('PTF99999')

 INCLUDE OLDMOD(PROG1)

 IDENTIFY CSECT1('I/O ROUTINE'),

 CSECT2('SORT ROUTINE'),

 CSECT3('SCAN ROUTINE')

/\

Execution of this example produces IDR records containing the following identifica-
tion data:

� The component ID of the binder that produced the program object or load
module, the binder version and modification level, and the date of the current
binder processing of the module. This information is provided automatically
irrespective of whether you specify an IDENTIFY statement.

� User-supplied data describing the functions of several control sections in the
module, as indicated on the IDENTIFY statements.

� If the language translator used supports IDR, the identification records
produced by the binder also contain the name of the translator that produced
the object module, its version and modification level, and the date of compila-
tion.

The IDR records created by the binder can be referenced by using the LISTIDR
option of the service aid program AMBLIST. For instructions on how to use
AMBLIST, see OS/390 MVS Diagnosis: Tools and Service Aids.

| IMPORT Statement
| The IMPORT statement specifies an external symbol name to be imported and the
| library member or OpenEdition file name where it can be found. An imported
| symbol is one which is expected to be dynamically resolved. The syntax of the
| IMPORT statement is:

| IMPORT| {CODE|DATA}
| ,dllname
| ,import_name

80 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

| {CODE|DATA}
| are mutually exclusive keywords that specify the type of symbol being imported.
| If CODE is specified, the import_name must represent the name of a code
| section or entry point.
| If DATA is specified, the import_name must represent the name of a variable or
| data type definition to be imported.

| dllname
| the name of the DLL module that contains the import_name to be imported. If
| it is a member of a PDSE, it must be a primary name or an alias, and its length
| is limited to eight bytes. If it is an OpenEdition file, the file name is limited to
| 255 bytes.

| import_name
| the symbol name to be imported. In programming terms, it represents a func-
| tion or method definition, or a variable or data type definition. This distinction is
| made by specifying either CODE or DATA. The import_name can be up to
| 1024 bytes in length.

| In order to continue a dllname or an import_name, code a non-blank character in
| column 72. Either blanks or commas will be accepted as delimiters between
| parameters.

| Placement: The IMPORT statement can be placed before, between, or after object
| modules or other control statements.

| Notes:

| 1. The DYNAM(DLL) binder option must be specified for IMPORT statements to
| take effect (see Figure 26 on page 103).

| 2. IMPORT statements are processed as they are received by the binder.
| However, symbol resolution is not done against the imported symbols until the
| binder's final autocall is finished.

| 3. A bind job for a DLL application should include an IMPORT control statement
| for any DLLs that the application expects to use. Otherwise, if the DLL name is
| unresolved at static bind time, it will not be accessible at run time.

| 4. The dllname cannot exceed 8 bytes if such DLL resides in a PDS or a PDSE
| library. Ensure that the dllname matches the actual name of the DLL. Other-
| wise, import names will not be resolved.

| 5. Typically, a dynamic link library will have an associated side file of IMPORT
| control statements, and you will include this side file when statically binding a
| module which imports functions or variables from that library. If desired,
| however, you can also edit the records in the side file or substitute your own
| IMPORT control statements so that some symbols are imported from DLLs in a
| different library.

| 6. Modules with imported symbols can be saved only in PM3 format. If you code
| IMPORT control statements you must be sure that COMPAT(PM3) is in effect.
| In DFSMS/MVS 1.4, this is the default.

 Chapter 6. Binder Control Statement Reference 81

 Control Statement Reference

| 7. The IMPORT statement depends on the processing level of the binder. You
| must do the following in order to enable its function:

| a. If you are using the binder's batch interface, specify the COMPAT(PM3)
| processing option (see “COMPAT: Binder Level Option” on page 109), or
| let it default to PM3.

| b. If you are using the binder's API, specify the VERSION(3) parameter in the
| STARTD function call (see “STARTD: Start Dialog” on page 210), or let it
| default to this level.

| Example
| IMPORT statements specify which symbols should be imported from a DLL pro-
| vider or providers:

| //EXEC PGM=IEWL,PARM='MAP,XREF,CASE=MIXED'

| //LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR

| //OBJECT1 DD PATH='/sl/app1/pm3d3/dllað1',PATHDISP=(KEEP,KEEP)

| //SYSLIN DD \

| IMPORT CODE TAXES97,Compute_97_Taxes_Schedule1

| IMPORT CODE TAXES97,Compute_97_Taxes_Schedule2

| IMPORT DATA REVENUE,TotalRevenue

| INCLUDE OBJECT1
| .| .| .

| /\

| In the above example, two functions are to be imported from member TAXES97
| and one data variable from member REVENUE. These members should be in a
| dynamic link library, which can be found by the system search mechanisms at exe-
| cution time. For example, the dynamic link library containing these members could
| be part of the STEPLIB concatenation.

 INCLUDE Statement
The INCLUDE statement specifies sequential data sets, library members, or
OpenEdition files that are to be sources of additional input for the binder.
INCLUDE statements are processed in the order in which they appear in the input.
However, the sequence of control sections within the output program object or load
module does not necessarily follow the order of the INCLUDE statements. If the
order of the CSECTs within the module is significant, you must specify the desired
sequence by using ORDER statements. The syntax of the INCLUDE statement is:

ddname
| the name of a DD statement that describes a sequential, a partitioned data set,
| a PDSE, or an OpenEdition file to be used as additional input to the binder. A

DD statement must be supplied for every ddname specified in an INCLUDE
statement. For a sequential data set, only ddname should be specified. For a
partitioned data set or PDSE, at least one member name must also be speci-
fied. If only a single member is to be included, its member name can be speci-
fied in the JCL rather than on the control statement.

INCLUDE {ddname[(membername[,...])]
[,ddname[(membername[,...])]]...

| |pathname...}

82 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

| When the include source is an OpenEdition file, the DD statement must reflect
| the absolute or relative pathname of the member to be included. In this case,
| the membername is not applicable and should not be specified.

membername
the name of or an alias for a member of the library defined in the specified DD
statement. The member name must not be specified on the DD statement.

| pathname
| the absolute or relative pathname for an OpenEdition file which can be up to
| 255 bytes. The pathname must be enclosed in single quotes. Continuation
| requires a non-blank character in column 72. Columns 73-80 are ignored and
| subsequent lines must begin in column 16. Note that this is an explicit specifi-
| cation for OpenEdition files. OpenEdition files can also be specified indirectly
| with a DD statement (see above). “Example 2” on page 84 uses pathname.
| The use of pathname on an INCLUDE statement will produce a binder gener-
| ated name in the binder output.

Placement: An INCLUDE statement can be placed before, between, or after object
modules or other control statements.

Notes:

1. A NAME statement in any data set specified in an INCLUDE statement is
invalid; the NAME statement is ignored. All other control statements are proc-
essed.

2. The INCLUDE statement is not allowed in a data set that is included from an
automatic call library.

3. When invoking the binder using the TSO link command, an INCLUDE state-
ment specifying a ddname of SYSLMOD will be allocated to the output library,
unless SYSLMOD has been specifically allocated to another library.

 Example 1
An INCLUDE statement can specify two data sets to be the input to the binder:

//OBJMOD DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR

//SYSLIN DD \

 INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)
 . . .

/\

Two separate INCLUDE statements could also have been used in this example:

INCLUDE OBJMOD

INCLUDE LOADMOD(TESTMOD,READMOD)

 Chapter 6. Binder Control Statement Reference 83

 Control Statement Reference

| Example 2
| INCLUDE statements may reference both MVS data sets and OpenEdition files to
| be used as input to the binder. OpenEdition files can be specified directly on an
| INCLUDE statement, or indirectly through DD statements which in turn reference
| OpenEdition files:

| //LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR

| //OBJECT2 DD PATH='/sl/app1/pm3d3/dllað2',PATHDISP=(KEEP,KEEP)

| //SYSLIN DD \

| INCLUDE LOADMOD(TESTMOD,READMOD)

| INCLUDE '/ml/app1/pm3d3/dllað1'

| INCLUDE OBJECT2
| .| .| .

| /\

 INSERT Statement
We do not recommend using the INSERT and OVERLAY statements for program

| objects. The binder supports the overlay format for compatibility only. If you use
| the OVERLAY statement, a program object will be created with a compatibility level
| of PM1 and, therefore, will not make use of the binder enhancements available in
| later releases. For more information on the use of the INSERT statement, see

Appendix E, “Designing and Specifying Overlay Programs” on page 305.

The INSERT statement repositions a section from its position in the input sequence
to a segment in an overlay structure. However, the sequence of sections within a
segment is not necessarily the order of the INSERT statements.

If a symbol specified in the operand field of an INSERT statement is not present in
the external symbol dictionary, it is entered as an external reference. If the refer-
ence has not been resolved at the end of primary input processing, the binder
attempts to resolve it from the automatic call library. The syntax of the INSERT
statement is:

sectionname
the name of the section to be repositioned. A particular section can appear
only once within a program object or load module.

Placement: The INSERT statement must be placed in the input sequence following
the OVERLAY statement that specifies the origin of the segment in which the
section is to be positioned. If the section is to be positioned in the root segment,
the INSERT statement must be placed before the first OVERLAY statement.

Notes:

1. Sections that are positioned in a segment must contain all address constants to
be used during execution unless:

� The A-type address constants are located in a segment in the path.

� The V-type address constants used to pass control to another segment are
located in the path. If an exclusive reference is made, the V-type address
constant must be in a common segment.

INSERT sectionname [,sectionname]...

84 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

� The V-type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

2. Automatically called sections not specified on INSERT statements are added to
the root segment.

 Example
The following INSERT (and OVERLAY) statements specify the overlay structure
shown in Figure 22:

// EXEC PGM=IEWBLINK,PARM='OVLY,XREF,LIST'

 .

 .

 .

//SYSLIN DD \

 INSERT CSA

 INSERT CSB

 OVERLAY ALPHA

 INSERT CSC,CSD

 OVERLAY ALPHA

 INSERT CSE

/\

 ─┬─

 │

 CSA

 │

 ─┼─

 │

 CSB

 │

 │

 ┌──────────────────────────────────┴───────────────────────────────────┐

 │ ALPHA │

 CSC CSE

 │ │

 ─┼─ │

 │ ─┴─

 CSD

 │

 │

 ─┴─

Figure 22. Overlay Structure for INSERT Statement Example

 LIBRARY Statement
The LIBRARY statement can be used to specify:

� Additional automatic call libraries which contain modules used to resolve
external references found in the program.

� Restricted no-call: External references that are not to be resolved by an auto-
matic library call during the current binder job step.

� Never-call: External references that are not to be resolved by an automatic
library call during this or any subsequent binder job step.

More than one library call specification can be made on the same LIBRARY state-
ment.

 Chapter 6. Binder Control Statement Reference 85

 Control Statement Reference

The syntax of the LIBRARY statement is:

ddname
is the name of a DD statement that defines a library from which the listed
symbols will be included during automatic library call.

membername
is the name of or an alias for a member of the specified library. Only those
members specified are used to resolve references.

externalreference
is an external reference that may be unresolved after primary input processing.
The external reference is not to be resolved by automatic library call.

* indicates never-call; the external reference should never be resolved from an
automatic call library. If the * (asterisk) is missing, the reference is left unre-
solved during the current binder job step but may be resolved in a subsequent
step.

If all binder input modules containing references to a specific symbol were
bound with never-call, then that symbol is not resolved by automatic library call
during this binder run. However, if one or more input modules do not indicate a
symbol as never-call, the binder attempts to resolve the symbol from the auto-
matic call library.

Placement: A LIBRARY statement can be placed before, between, or after object
modules or other control statements.

Notes:

1. If the unresolved external symbol is not a member or alias name in the library
specified, the external reference remains unresolved unless defined in another
input module.

2. If the NCAL option is specified, the LIBRARY statement has no effect.

3. Members included by automatic library call are placed in the root segment of an
overlay program, unless they are repositioned with an INSERT statement.

4. The LIBRARY control statement is not processed immediately. If the same
symbol appears on more than one LIBRARY statement, only the last occur-
rence is used.

5. Specifying an external reference for restricted no-call or never-call by means of
the LIBRARY statement prevents the external reference from being resolved by
automatic inclusion of the necessary module from an automatic call library; it
does not prevent the external reference from being resolved if the module nec-
essary to resolve the reference is specifically included or is included as part of
an input module.

6. The LIBRARY statement is not allowed in a data set that is included from an
automatic call library.

LIBRARY {{ddname(membername[,...])}
 {(externalreference[,...])}
 {*(externalreference[,...])}},...

86 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

 Example
This example shows all three uses of the LIBRARY statement:

// EXEC PGM=IEWBLINK,PARM='LET,XREF,LIST'

//TESTLIB DD DSNAME=PROJECT.TESTLIB,DISP=SHR

 .

 .

 .

//SYSLIN DD \

 LIBRARY TESTLIB(DATE,TIME),(FICACOMP),\(STATETAX)

/\

As a result, members DATE and TIME from the additional library TESTLIB are
used to resolve external references. FICACOMP and STATETAX are not resolved;
however, because the references remain unresolved, the LET option must be spec-
ified on the EXEC statement if the module is to be marked executable. In addition,
STATETAX will not be resolved in any subsequent reprocessing by the binder.

 MODE Statement
The MODE statement specifies the addressing mode for all the entry points into the
program module (the main entry point, its true aliases, and all the alternate entry
points) and the residence mode for the program module. The syntax of the MODE
statement is:

modespec
is one or both of the following:

� The designation of an addressing mode for the output program object or load
module by one of the following:

 AMODE(24)
 AMODE(31)
 AMODE(ANY)
 AMODE(MIN)

Specifying AMODE(MIN) causes the most restrictive AMODE of all control
sections within the program module to be assigned.

See “AMODE: Addressing Mode Option” on page 108 for more information
about specifying AMODE.

� The designation of residence mode for the output program object or load
module by one of the following:

 RMODE(24)
 RMODE(ANY)
 RMODE(SPLIT)

See “RMODE: Residence Mode Option” on page 121 for more information
about specifying RMODE.

Placement: The MODE control statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME statement
for the module, if one is present.

MODE modespec[,modespec]

 Chapter 6. Binder Control Statement Reference 87

 Control Statement Reference

Notes:

1. If more than one MODE control statement is encountered in the binding of a
program object or load module, the last valid AMODE and RMODE specifica-
tions are used.

2. The binder treats AMODE and RMODE values independently until they are
required for output processing. At this time the combination of AMODE and
RMODE values for each entry point are checked for conflict. See “AMODE and
RMODE Combinations” on page 24 for information on AMODE and RMODE
compatibility.

3. The addressing mode assigned by the MODE control statement overrides the
separate addressing modes found in the ESD data for the control sections
within which the entry points are located. The addressing mode assigned by
the MODE control statement overrides the addressing mode assigned by the
AMODE parameter in the PARM field of the EXEC statement. A specified
AMODE value applies to all entry points in the module, and is stored in all gen-
erated directory entries.

4. The residence mode assigned by the MODE control statement overrides the
residence mode accumulated from the input control sections and private code.
The residence mode assigned by the MODE control statement also overrides
the residence mode assigned by the RMODE parameter in the PARM field of
the EXEC statement. A specified RMODE value applies to the entire module,
unless the SCTR (scatter) option has been specified, and is stored in all gener-
ated directory entries.

 Example
In this example, an output module, NEWMOD, is created. It is given an alias of
TESTMOD, the residence mode for the module is ANY, and the addressing mode
for both the main entry point, NEWMOD, and the true alias, TESTMOD, is 31. The
addressing and residence modes allow the program to be loaded into 31-bit
addressable virtual storage.

//SYSLMOD DD DSN=USER.TESTPROG,DISP=OLD

//SYSLIN DD \

 .

 .

 .

 MODE AMODE(31),RMODE(ANY)

 ALIAS TESTMOD

 NAME NEWMOD

/\

 NAME Statement
The NAME statement specifies the name of the program module created from the
preceding input modules, and serves as a delimiter for input to the program
module. As a delimiter, the NAME statement allows you to create more than one
program module in one binder step. The NAME statement can also indicate that
the module replaces an identically named module in the output program library.
The syntax of the NAME statement is:

NAME membername[(R)]

88 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

membername
the name to be assigned to the program object or load module created from
the preceding input modules.

(R)
indicates that this program module replaces an identically named module in the
output module library, and that any aliases specified on ALIAS statements
replace identically named aliases. If the module is not a replacement, (R) is
ignored.

Placement: The NAME statement is placed after the last input module or control
statement to be used for the output module.

Notes:

1. Any ALIAS statement must precede the NAME statement.

2. If you are binding a program object, only the aliases specified on ALIAS state-
ments are kept for the program object. Any other aliases for the replaced
program object are deleted from the directory of the program library. If you are
binding load modules, any aliases for the replaced load modules that are not
themselves replaced are kept and point to the old load module.

| 3. If a name is not specified either on the NAME statement or on the DD state-
| ment for the SYSLMOD data set, and the SYSLMOD data set is a partitioned
| data set (PDS or PDSE), the binder will assign the name TEMPNAMn, using

values 0-9 for n. The binder will not save the module if the names TEMPNAM0
| through TEMPNAM9 are already in use. This assignment of temporary names
| does not take place if the SYSLMOD data set is an OpenEdition file. Instead,
| the binder issues an error message stating its inability to save the output
| module.

4. If the (R) value is not specified, and a member of the same name already
exists in the output module library, the binder will not replace the module or
save it under another name.

5. Normally, the binder does not replace an executable module with a non-
executable module even if the (R) value is specified. You can specify the
STORENX option to override this default action. See “STORENX: Store Not-
Executable Module” on page 123 for a further description.

6. A NAME statement found in a data set other than the primary input data set is
invalid. The statement is ignored.

7. The IEWBLDGO binder entry point does not accept a NAME statement.

8. If you do not specify the (R) parameter when processing an OpenEdition file,
the binder issues an informational message.

 Chapter 6. Binder Control Statement Reference 89

 Control Statement Reference

 Example
In this example, two output modules, RDMOD and WRTMOD, are produced by the
binder in one job step:

//SYSLMOD DD DSNAME=PROJECT.AUXMODS,DISP=SHR

//NEWMOD DD DSNAME=&&WRTMOD,DISP=OLD

//SYSLIN DD DSNAME=&&RDMOD,DISP=OLD

// DD \

 NAME RDMOD(R)

 INCLUDE NEWMOD

 NAME WRTMOD(R)

/\

The first time modules RDMOD and WRTMOD are created in the module library
AUXMODS, the (R) option is ignored. When the same modules are rebound using
the same control statements, the (R) option results in a replacement of the old
modules.

 ORDER Statement
The ORDER statement indicates the sequence in which control sections or named
common areas appear in the output program object or load module. The control
sections or named common areas appear in the sequence they are specified on the
ORDER statement. The syntax of the ORDER statement is:

section name
is the name of the section to be sequenced.

(P)
indicates the starting address of the control section or named common area is
to be on a page boundary within the program object or load module. The
control sections or common areas are aligned on 4KB page boundaries, unless
the ALIGN2 option has been specified.

Placement: An ORDER statement can usually be placed before, between, or after
object modules or other control statements.

Notes:

1. When multiple ORDER statements are used, their sequence further determines
the sequence of the control sections or named common areas in the output
module. If the same common area or control section is listed on more than
one ORDER statement, the binder uses the sequence stated on the last
request.

2. The control sections and common areas named as operands can appear in
either the primary input or the automatic call library, or both.

3. If a control section or a named common area is changed by a CHANGE or
REPLACE control statement and sequencing is desired, specify the new name
on the ORDER statement.

ORDER sectionname[(P)]

90 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

 Example
In the statements shown in Figure 23, the control sections in the module LDMOD
are arranged by the binder according to the sequence specified on ORDER state-
ments. The page boundary alignments and the control section sequence made as
a result of these statements are shown in Figure 23. Assume each control section
is less than 1KB in length.

JCL and Control Statements Output Module
 PRGMOD

//SYSLMOD DD DSNAME=PROJECT.PROGLIB,DISP=SHR ðK ┌──────────────┐

//SYSLIN DD \ │ROOTSEG │

 ORDER ROOTSEG(P),MAINSEG,SEG1,SEG2 │ │

 ORDER SEG3(P),ENTRY1 ├──────────────┤

 CHANGE PART1(FSTPART) │MAINSEG │

 ORDER FSTPART,SESECTA,SESECTB(P) ├──────────────┤

 INCLUDE SYSLMOD(PRGMOD) │SEG1 │

 NAME PROGMOD(R) ├──────────────┤

/\ │SEG2 │

 │ │

 ├──────────────┤

│ Empty space │

 4K ├──────────────┤

 │SEG3 │

 ├──────────────┤

 │ │

 │ENTRY1 │

 ├──────────────┤

 │ │

 │FSTPART │

 ├──────────────┤

 │SESECTA │

 ├──────────────┤

│ Empty space │

 8K ├──────────────┤

 │SESECTB │

 │ │

 └──────────────┘

Figure 23. Example of an Output Module for the ORDER Statement. The control section name PART1 is changed
by a CHANGE statement to FSTPART. The ORDER statement refers to the control section by its new name.

 OVERLAY Statement
We do not recommend using the INSERT and OVERLAY statements for program
objects. The binder supports the overlay format for compatibility only. For more
information on the use of the OVERLAY statement, see Appendix E, “Designing
and Specifying Overlay Programs” on page 305.

The OVERLAY statement indicates the beginning of an overlay segment and,
optionally, also of an overlay region. Because a segment or a region is not named,
you identify it by giving its origin (or load point) a symbolic name. This name is
then used on an OVERLAY statement to signify the start of a new segment begin-
ning at that origin. The syntax of the OVERLAY statement is:

OVERLAY symbol[(REGION)]

 Chapter 6. Binder Control Statement Reference 91

 Control Statement Reference

symbol
the symbolic name assigned to the origin of a segment. This symbol is not
related to external symbols in the module.

(REGION)
specifies the origin of a new region, as well as a segment.

Placement: The OVERLAY statement must precede the first module of the next
segment, the INCLUDE statement specifying the first module of the segment, or the
INSERT statement specifying the control sections to be positioned in the segment.

Notes:

1. The OVLY option must be specified on the EXEC statement when OVERLAY
statements are to be used.

2. The sequence of OVERLAY statements should reflect the order of the seg-
ments in the overlay structure from top to bottom, left to right, and region by
region.

3. No OVERLAY statement should precede the root segment.

 Example
The following OVERLAY and INSERT statements specify the overlay structure in
Figure 24 on page 93.

// EXEC PGM=IEWBLINK,PARM='OVLY,XREF,LIST'
...

//SYSLIN DD DSNAME=&&OBJ,...

// DD \

 INSERT CSA

 OVERLAY ONE

 INSERT CSB

 OVERLAY TWO

 INSERT CSC

 OVERLAY TWO

 INSERT CSD

 OVERLAY ONE

 INSERT CSE,CSF

 OVERLAY THREE(REGION)

 INSERT CSH

 OVERLAY THREE

 INSERT CSI

/\

92 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

REGION 1
 ─┬─

 │

 CSA

 │

 ┌─────────────────┴─────────────────┐

│ ONE │

 CSB CSE

 │ │

 │ ─┼─

 ┌───────────────┴──────────────┐ │

 │ TWO │ CSF

 CSC CSD │

 │ │ ─┴─

 ─┴─ ─┴─

--

 │ THREE │

REGION 2 CSH CSI

 │ │

 ─┴─ ─┴─

Figure 24. Example of an Overlay Structure for the OVERLAY Statement

 PAGE Statement
The PAGE statement aligns a control section or named common area on a 4KB
page boundary in the program object or load module. The syntax of the PAGE
statement is:

section name
the name of the section to be aligned on a page boundary.

Placement: The PAGE statement can be placed before, between, or after object
modules or other control statements.

Notes:

1. If a section is changed by a CHANGE or REPLACE control statement, and
page alignment is wanted, specify the new name in the PAGE statement.

2. The sections named can appear in either the primary input or the automatic call
library, or both.

3. If the ALIGN2 option has been specified, sections listed on the PAGE state-
ment will be aligned on 2KB boundaries.

PAGE sectionname...

 Example
In this example, the sections in the module PRGMOD are aligned on page bounda-
ries as specified in the following PAGE statement:

PAGE ALIGN,BNDRY4K,EIGHTK

The job control statements and binder control statements as well as the output
program object or load module are shown in Figure 25 on page 94. Assume each
control section is 3KB in length.

 Chapter 6. Binder Control Statement Reference 93

 Control Statement Reference

JCL and Control Statements Output Module

 PRGMOD

//LKED EXEC PGM=IEWBLINK, PARM=,... ┌─────────────────┐

//SYSLMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR ðK │ALIGN │

//SYSLIN DD \ │ │

 PAGE ALIGN,BNDRY4K,EIGHTK │ │

 INCLUDE SYSLMOD(PRGMOD) │ │

 NAME PROGMOD(R) │ │

/\ │ │

 │ │

 │ │

 ├─────────────────┤

 │ │

 │ Empty space │

 4K ├─────────────────┤

 │BNDRY4K │

 │ │

 │ │

 │ │

 │ │

 │ │

 │ │

 │ │

 ├─────────────────┤

 │ │

 │ Empty space │

 8K ├─────────────────┤

 │EIGHTK │

 │ │

 │ │

 │ │

 │ │

 └─────────────────┘

Figure 25. Example of an Output Module for the PAGE Statement

 RENAME Statement
The RENAME statement allows for the renaming of specific symbols. An old
symbol name may be renamed to a new symbol name which can then be used to
resolve references when binding a module. The rename requests take place only
after the binder attempts to resolve the original names. The new names are then
used during the binder's final autocall in order to resolve any references previously
unresolved.

The syntax of the RENAME statement is:

oldname
the symbol to be renamed. Its maximum length is 1024 bytes.

newname
the symbol name to which the oldname should be changed. Its maximum
length is 1024 bytes.

To continue either of the symbols on multiple lines, code a non-blank character in
column 72 of each line. Columns 73 to 80 of each line are ignored.

Placement: The RENAME statement can be placed before, between, or after
object modules or other control statements. They do not take effect, however, until

RENAME oldname
,newname

94 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

an AUTOCALL statement is processed, or, in the absence of AUTOCALL state-
ments, until after the binder's final autocall processing takes place.

Notes:

1. The only immediate result of the RENAME control statement is that the rename
request is added to the binder's list of such requests. RENAME processing
takes place only after all possible references have been resolved with the
names as they were specified on input.

2. This statement is the functional equivalent of the prelinker's RENAME control
statement. It should be noted, however, that the SEARCH parameter of the
prelinker's statement is not supported by the binder.

3. RENAME will only affect symbols which are marked as 'renameable'. Since
traditional object modules and load modules do not support the renameable
attribute, RENAME will have no effect on symbols originating from modules in
those formats. The renameable attribute is supported by GOFF, and it is also
set for XSD records with the “mapped” bit off (from XOBJ modules).

4. RENAME will have no effect on symbols originating from PR records (pseudo-
register or part references).

5. RENAME will have no effect on imported symbols.

 Example
...

//TAXES DD PATH='/sl/finance/app1/dlltxs',PATHDISP=(KEEP,KEEP)

//SYSLIB DD DSNAME=PROJECT.OBJLIB,DISP=SHR

//SYSLIN DD \

 INCLUDE TAXES

 RENAME Compute_98_Taxes_Schedule2,Taxes98
 . . .

/\

 REPLACE Statement
The REPLACE statement is used to replace or delete external symbols. The
external symbol can name a section, an entry point, an external reference, or a
pseudoregister.

One section can be replaced with another. All references within the input module
to the old section are changed to the new section. Any external references to the
old section from other modules are unresolved unless changed.

A section can be deleted. The section name is deleted from the external symbol
dictionary. External references from other modules to a deleted section also
remain unresolved. If there are references to any address within a deleted section,
then the section name in changed to an external reference.

If the first symbol in the REPLACE statement refers to a symbol that is not a
section or common area, the results will be the same as if a CHANGE statement
were coded. The first symbol is replaced by the second symbol. The first symbol
is deleted when the second symbol is omitted.

 Chapter 6. Binder Control Statement Reference 95

 Control Statement Reference

The syntax of the REPLACE statement is:

externalsymbol1, externalsymbol2
names an external symbol to be replaced or deleted. If you only specify
externalsymbol1, the external symbol is deleted. If you specify externalsymbol2
in parentheses following externalsymbol1, then externalsymbol1 is replaced by
externalsymbol2. You can delete or replace any number of external symbols
with one REPLACE statement.

Placement: The REPLACE statement must immediately precede either the module
containing the external symbol to be replaced or deleted, or the INCLUDE state-
ment specifying the module. The scope of the REPLACE statement is across the
immediately following program or object module.

Notes:

1. If during automatic library call the replacement symbol is still undefined in the
module, the binder attempts to resolve the reference from SYSLIB.

2. When a section containing unresolved external references is deleted, the binder
removes these references from the ESDs.

3. When using the binder, if no INCLUDE statement follows the REPLACE state-
ment, the request is ignored.

4. If the REPLACE statement appears in a module included from a data set in an
automatic call library, it will be ignored if it is not followed by a module from the
same data set.

5. Restrictions apply whenever both CHANGE and REPLACE operations are per-
formed on the same included program or object module. You may need to
delete one of several sections and at the same time rename references to that
section (all within the scope of the same INCLUDE) to some other external
symbol. To change more than one entry name within the original section to a
single new external symbol, you must specifically include the section that
resolves the new external symbol, prior to the change operation.

6. When using a REPLACE statement to replace or delete a named common
area, the common area must be defined in the first program or object module
following the REPLACE statement.

7. When deleting an entry name, if there are any references to it within the same
input module, the entry name is changed to an external reference.

REPLACE externalsymbol1[(externalsymbol2)]...

 Example
In this example, assume that section INT7 is in member LOANCOMP and that
section INT8, which is to replace INT7, is in data set &&NEWINT. Also assume
that section PRIME in member LOANCOMP is to be deleted.

96 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

//NEWMOD DD DSNAME=&&NEWINT,DISP=(OLD,DELETE)

//OLDMOD DD DSNAME=PROJECT.PROGLIB,DISP=SHR

//SYSLIN DD \

 ENTRY MAINENT

 INCLUDE NEWMOD

 REPLACE INT7(INT8),PRIME

 INCLUDE OLDMOD(LOANCOMP)

 NAME LOANCOMP(R)

/\

As a result, INT7 is removed from the input module described by the OLDMOD DD
statement, and INT8 replaces INT7. All references to INT7 in the input module now
refer to INT8. Any references to INT7 from other modules remain unresolved. If
there are no references to PRIME in LOANCOMP, section PRIME is deleted; the
section name is also deleted from the external symbol dictionary.

 SETCODE Statement
The SETCODE statement assigns a specified authorization code to the output load
module or program object. The authorization code is placed in the directory entry
for the output load module or program object.

The binder allows any numeric value between 0 and 255. The MVS Authorized
Program Facility (APF) determines that a module is authorized if the authorization
code has a value of 1. The module is unauthorized if the authorization code has
any other value. Refer to OS/390 MVS Auth Assembler Services Guide for addi-
tional information on the APF.

The syntax of the SETCODE statement is:

authorizationcode
a decimal number from 0 to 255. Specifying AC() results in an authorization
code of zero.

Placement: A SETCODE statement can be placed before, between, or after object
modules or other control statements. It must precede the NAME statement for the
module, if one is present.

Notes:

1. The authorization code assigned by the SETCODE statement overrides the
authorization code assigned by the AC parameter in the PARM field of the
EXEC statement.

2. If more than one SETCODE statement is encountered in the bind of a load
module or program object, the last valid authorization code assigned is used.

SETCODE AC(authorizationcode)

 Chapter 6. Binder Control Statement Reference 97

 Control Statement Reference

 Example
In this example, an authorization code of 1 is assigned to the output module MOD1.

//LKED EXEC PGM=IEWBLINK

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSNAME=SYS2.LINKLIB,DISP=OLD

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS)

// DD \

 SETCODE AC(1)

 NAME MOD1(R)

/\

 SETOPT Statement
The SETOPT statement allows you to set options at the module level, rather than
the job level as in the binder batch parameter string. This allows you to set module
attributes when a number of modules are being bound separately in a single MVS
job step.

SETOPT accepts a string of parameter specifications as if it had been entered on
the PARM parameter of the EXEC JCL statement. The options you specify are
valid only until after the next NAME control statement is processed or until an end-
of-file condition is detected in SYSLIN.

The syntax of the SETOPT statement is:

PARM(parm)
accepts a string of parameter specifications as if it had been entered on the
PARM parameter of the EXEC JCL statement. It follows the same syntax rules
as the binder batch execution parameter string. All options except for SIZE,
WKSPACE and LINECT may be set in this way, although LIST, PRINT and
TERM have no effect at the module level as they are processed at dialog start
time. TRACE and DUMP can be specified on SETOPT for selective dumping
and tracing, providing better diagnostic capabilities for the binder.

See Chapter 7, “Binder Options Reference” on page 101 for more information
on the options that can be specified in the PARM field of the EXEC statement.

Note: The SETOPT control statement is not recommended for use with
SMP/E. Options specified on SETOPT are not processed by SMP/E and can
cause conflicts during installation.

SETOPT PARM(parm)

 SETSSI Statement
The SETSSI statement specifies hexadecimal information to be placed in the
system status index of the directory entry for the output module. The syntax of the
SETSSI statement is:

SETSSI ssi-info

98 DFSMS/MVS V1R4 Program Management

 Control Statement Reference

ssi-info
represents 8 hexadecimal characters (0 through 9 and A through F) to be
placed in the 4-byte system status index of the output module library directory
entry.

Placement: The SETSSI statement can be placed before, between, or after object
modules or other control statements. If one is present, it must precede the NAME
statement for the module.

Notes:

1. The SETSSI statement overrides any SSI option included in the PARM field of
the EXEC statement.

2. A SETSSI statement should be provided whenever an IBM-supplied program
module is reprocessed by the binder. If the statement is omitted, no system
status index information is present.

 Chapter 6. Binder Control Statement Reference 99

 Control Statement Reference

100 DFSMS/MVS V1R4 Program Management

 Options Reference

Chapter 7. Binder Options Reference

This section describes the processing and attribute options that can be requested.
Options for a particular binder execution can be provided on the PARM field of the
EXEC statement. Options also can be written to a data set and included using the
OPTIONS keyword in the PARM field.

If more than one output module is produced by the same binder job step, the
options specified will apply to each output module. Some options define attributes
of the output modules. The attributes for each module are stored in the directory of
the program library along with the member name.

Note: This chapter refers to binder processing. These concepts apply equally to
linkage editor and batch loader processing unless noted otherwise in “Processing
and Attribute Options Reference” on page 266. The linkage editor and batch
loader cannot process program objects.

The following binder options allow you to override the defaults set for your installa-
tion.

Specifying Binder Options
Binder options are specified in the PARM field of the EXEC statement. The syntax
of the PARM field is:

PARM=(option[,option],...)

where option can be specified as

{{option}
{option(value[,value]...)}
{option=value}
{option=(value[,value]...)}}

| You can use single quotations marks, rather than parentheses, to enclose the com-
| plete options string in the PARM field. You can use parentheses outside a com-
| plete string that is delimited by single quotes, as in PARM=('option,option'). You
| cannot use single quotes outside a complete string that is delimited by paren-
| theses. You can enclose values in parentheses.

| Binder keywords are always converted to upper case.

| If you only specify one option, it need not be enclosed in parentheses or single
| quotation marks.

| The binder bridges the limitations imposed by the JCL interpreter by allowing addi-
| tional freedom in the format of the options string. While it makes every effort to
| resolve explicit (and implied) syntactical and semantic combinations in the options
| string, its success is very much dependent on the validity of the string specification.
| Caution and adherence to the options syntax is recommended when building the
| options string. Binder warning or error messages will identify any problems
| detected while parsing the options string.

 Copyright IBM Corp. 1991, 1997 101

 Options Reference

| Options that would otherwise be set on the PARM field can also be specified in the
| options file. This allows you to specify a set of binder options which might other-
| wise exceed the MVS PARM string length limitation of 100 bytes. It also allows
| you to create one or more binding profiles which can be included at bind time. By
| specifying OPTIONS=ddname in the PARM field, the options file effectively
| replaces the options string in the PARM field.

Many options have as possible values YES and NO. These options usually have
an associated option which begins with N or NO. For example, you can specify
MAP to produce a module map and NOMAP to suppress production of a module
map. You can also specify the MAP option as MAP=YES or MAP(YES) and
MAP=NO or MAP(NO).

Note that the options you specify in the PARM parameter of the EXEC statement
always override similar data from included modules. For example, if you specify
PARM=RENT, the resultant module is marked “reentrant” regardless of the reusa-
bility of any included modules.

The summary of binder options in Figure 26 on page 103 shows the associated
negative option if the options values are YES and NO.

Establishing Installation Defaults
Note: This procedure involves making changes to an MVS component and modi-
fying an authorized library. It can only be performed by your system programmer,
who can provide you with a list of the defaults which have been established for
your installation.

Default values for binder options can be tailored to the needs of your installation by
replacing a data-only load module in SYS1.LINKLIB. CSECT IEWBODEF in load
module IEWBLINK can be used to specify default values for one or more options.
The module is initially set to the null string but can be modified to contain binder
option default settings in the same form they would be specified in the JCL PARM
field, without enclosing apostrophes or parentheses. A halfword length field pre-
ceding the string must be set to the current length of the string.

The following example shows how you can set the defaults for binder options
FETCHOPT, LET and MSGLEVEL:

 IEWBODEF CSECT

 DC AL2(ENDPARM-PARMS)

 PARMS EQU \

 DC C'FETCHOPT(NOPACK,NOPRIME),'

 DC C'LET(4),'

 DC C'MSGLEVEL(4)'

 ENDPARM EQU \

 END

Any options which can be set in the JCL PARM field can be defaulted in this
manner. Notice the setting of the length and the comma delimiters between
options. Once this module has been assembled it must be linked into module
IEWBLINK, using either the linkage editor or binder, replacing the empty module.

It is recommended that only binder processing options, (for example, COMPAT,
LINECT, LIST, MAP, and MSGLEVEL), be established for your installation. Module

102 DFSMS/MVS V1R4 Program Management

 Options Reference

attributes, such as RMODE, REUS and OVLY, tend to vary from module to module,
and changing the defaults for these attributes can result in unwanted conflicts.
Note that utilities, such as IEBCOPY, invoke the binder to perform part of their
processing, and any defaults established with this procedure can affect those utili-
ties as well.

 Binder Options
Figure 26 briefly describes all of the PARM options available to the binder. For
options with only yes and no values, the binder provides negative options. You can
either specify the negative option or set the primary option equal to NO. These
options are listed in parentheses beneath the primary option. Descriptions are for
the primary options. Figure 26 also lists the default values for each option when
using either IEWBLINK or IEWBLDGO.

Most options can be set on the PARM field of the EXEC statement or on the
SETOPT control statement. Options set from the PARM field are in effect for the
entire job step, whereas options set via control statements (MODE, SETCODE,
SETOPT, SETSSI) are in effect only for the module in process. Options set on
control statements override settings from the PARM field.

Certain options are designated as “environmental” options and can only be speci-
fied on the PARM field (they cannot be specified in the options file). Environmental
options are:

� CASE - Space mixed case sensitivity
� COMPAT - Specify binder compatibility level
� LINECT - Specify number of lines per printed page
� MSGLEVEL - Specify minimum severity level for message printing
� OPTIONS - Specify embedded options file
� PRINT - Direct messages to SYSLOUT data set
� SIZE - Restrict binder working storage limitations
� TERM - Create copy of messages in SYSTERM

Detailed information on each option follows this summary.

Figure 26 (Page 1 of 5). Summary of Processing and Attribute Options

Option Default Values Description

AC 0 Assigns an authorization code to the
output module, which determines
whether the module can use
restricted system services.

| ALIASES| NO| ALIASES(ALL) allows you to mark
| external symbols as aliases when
| binding a module. The resultant
| aliases are non-executable. They
| are simply used for symbol resol-
| ution.

ALIGN2
(NOALIGN2)

NO Specifies that a page specification
causes the text to be aligned on a 2
KB boundary within the module. It
has no effect on where the module is
loaded in virtual storage.

 Chapter 7. Binder Options Reference 103

 Options Reference

Figure 26 (Page 2 of 5). Summary of Processing and Attribute Options

Option Default Values Description

AMODE Default is the ESD AMODE
value.

Assigns an addressing mode (24, 31,
or ANY) to the entry points in the
output program module. Specifying
MIN causes the AMODE to be set to
the most restrictive AMODE value of
all control sections within the module.

CALL (NCAL,
NOCALL)

YES Causes the binder to search program
libraries to resolve external refer-
ences (automatic library call).

CASE UPPER Controls case sensitivity in names
encountered in control statements
and call parameters.

COMPAT PM3 Allows you to specify the binder com-
patibility level. The default is PM3
(current level binder), unless OVLY is
specified when PM1 is the default.

| (If a PDS is specified, then a load
| module is created.) If OS/390 2.4 or
| higher is not installed, the default is
| COMPAT(PM2) for program objects.

DC (NODC) NO Causes a maximum record size of
1024 bytes to be used for the output
module. (This option is only valid
when creating load modules.)

DCBS (NODCBS) NO Allows you to specify the block size
for the SYSLMOD data set in the
DCB parameter of the SYSLMOD
DD statement. (This option is only
valid when creating load modules.)

| DYNAM| NO| Determines whether the resultant
| module is to be enabled for dynamic
| binding. If enabled, the module
| becomes a DLL module from which
| other DLLs' imports can be resolved.
| Similarly, it is also able to import
| symbols from other DLLs.

EDIT (NE) YES Allows the module to be saved in a
format which allows it to be rebound.

EP no default Allows you to specify the external
name to be used as the entry point
of the loaded program.

EXITS no default Allows you to specify (one or more)
exits are to be taken during binder
processing.

FILL no default Allows you to specify the character
to be used to fill uninitialized areas.

| FILL applies to program objects only.

HOBSET NO Allows you to specify if the high
order bit of each V-con is to be set
according to the AMODE of the
target entry point.

104 DFSMS/MVS V1R4 Program Management

 Options Reference

Figure 26 (Page 3 of 5). Summary of Processing and Attribute Options

Option Default Values Description

FETCHOPT NOPACK
NOPRIME

Allows you to specify how and when
a program object is loaded into
virtual storage. You can specify if
the program is loaded on a page
boundary and whether or not the
entire program is brought into virtual
storage before it is executed. (This
option is only valid when creating
program objects.)

LET (NOLET) 4 Allows you to specify a severity
code; the output module is marked
as not executable if a severity code
higher than the level you specified is
found during processing.

LINECT 60 Specifies the number of lines to be
included on each page of binder
output listings. The minimum sup-
ported value is 24; the default is 60.

LIST (NOLIST) OFF Allows you to control the information
included in the SYSPRINT or
SYSLOUT data set.

MAP (NOMAP) NO Produces a module map.

MAXBLK no default Specifies the maximum size of a text
record in a load module to be stored
in a program library, allowing you to
ensure that a load module can be
copied between devices without
reblocking. (This option is only valid
when creating load modules.)

MSGLEVEL 0 Allows you to limit the messages dis-
played to a given severity level and
higher.

NAME **GO Allows you to specify a name to be
used to identify the loaded program
to the system.

OL (NOOL) NO Allows the module to be brought into
virtual storage only by using a LOAD
macro.

OPTIONS no default Allows you to embed a data set con-
taining binder options to be used
during the current processing.

OVLY (NOOVLY) NO Places the output program module in
an overlay structure.

| PATHMODE| no default| Specifies pathmode to be used when
| saving a module to an OpenEdition
| file.

 Chapter 7. Binder Options Reference 105

 Options Reference

Figure 26 (Page 4 of 5). Summary of Processing and Attribute Options

Option Default Values Description

PRINT (NOPRINT) YES Indicates that informational and diag-
nostic messages are to be written to

| the SYSLOUT data set for
| IEWBLDGO and SYSPRINT data set
| for IEWBLINK.

RES (NORES) IEWBLDGO=YES
IEWBLINK=NO

Allows you to specify whether or not
the binder should automatically
search the link pack area queue
during automatic library call. For
IEWBLDGO the default is YES, and
for IEWBLINK the default is NO.

REUS NONE Allows you to specify whether the
output program module will be
refreshable, reenterable, serially
reusable or non-reusable.

RMODE Default is the ESD RMODE
value.

Assigns the residence mode (24,
ANY, or SPLIT) to the output
program module.

| SCTR| NO| Builds control blocks needed by the
| system nucleus. Load module only.

SIZE no default Allows you to specify the amount of
virtual storage available for binder
processing and the output module
buffer. We do not recommend use
of this option with the binder.

SSI no default Allows you to specify hexadecimal
information to be placed in the
system status index; also see
“SETSSI Statement” on page 98.

STORENX
(NOSTORENX)

NO Causes the binder to replace an exe-
cutable copy of a program module
with a not-executable copy.

TERM (NOTERM) NO Copies the numbered binder error
and warning messages into a data
set that has been defined by a
SYSTERM DD statement.

TEST (NOTEST) NO Specifies that the module is to be
tested and causes the testing symbol
tables to be placed in the output
module. This option is only opera-
tional if the output module is exe-
cuted under TSO.

| UPCASE| NO| Indicates whether additional
| renaming is to be done when
| symbols remain unresolved after the
| binder's autocall process with XOBJ
| modules as input.

WKSPACE See “WKSPACE: Working
Space Specification Option”
on page 125.

Allows you to specify the maximum
amount of virtual storage available
for binder processing both above and
below the 16 MB line.

106 DFSMS/MVS V1R4 Program Management

 Options Reference

Figure 26 (Page 5 of 5). Summary of Processing and Attribute Options

Option Default Values Description

XCAL (NOXCAL) NO Causes valid exclusive references
between overlay segments to be
treated as a warning (severity 4)
rather than an error (severity 8) con-
dition.

XREF (NOXREF) NO Produces a cross-reference table of
the output module in the diagnostic
output data set.

AC: Authorization Code Option
An output program module is assigned an authorized program facility (APF) authori-
zation code that determines whether the module can use restricted system services
and resources. You can assign an authorization code on the PARM field by using
the AC parameter as follows:

AC=n

The authorization code n must be an integer between 0 and 255. The AC option
default is 0. The authorization code assigned in the PARM field is overridden by an
authorization code assigned through the SETCODE control statement.

A non-zero authorization code has an effect only if the program resides in an
APF-authorized library defined by your system programmer. See OS/390 MVS
Auth Assembler Services Guide for more information on APF and system integrity.

| ALIASES: ALIASES Option
| The ALIASES option requests directory entries be created for defined symbols in a
| module so that those names can be used to resolve references during autocall.
| Because the aliases are only used for symbol resolution and are not executable,
| they are called “hidden” aliases. You can code the ALIASES option to the PARM
| field as follows:

| ALIASES={NO |ALL}

| Notes:

| 1. Hidden aliases will not be created if NO is specified, or if the ALIASES option
| value is defaulted. Note that the creation of hidden aliases is also dependent
| on the processing level of the binder. Be sure that the COMPAT processing
| option is at least PM3 for the ALIASES option to take effect.

| 2. This processing option is intended to enable standard system support for
| symbol resolution similar to that provided by C370/LLIB object libraries.

| 3. The DESERV macro has a new HIDE parameter which may be used by an
| application program to control whether or not hidden aliases are returned on a
| GET_ALL request. See the DESERV macro in DFSMS/MVS Macro
| Instructions for Data Sets

 Chapter 7. Binder Options Reference 107

 Options Reference

ALIGN2: 2KB Page Alignment Option
When binder page-aligns sections of text, a 4KB page size is assumed. For com-
patibility with older environments that used 2KB pages, if you are binding program
modules that will execute on hardware that supports 2KB pages (not System/370 or
System/390), you can request 2KB page alignment by coding the ALIGN2 option in
the PARM field of the EXEC statement. There are advantages to using 2KB align-
ment for modules which are executed on System/370 or System/390, although the
system loader loads the module on a 4KB page boundary regardless of the
ALIGN2 specification. Program data areas which are aligned are easier to read in
a SNAP or ABEND dump and performance-critical assembler routines may perform
better if they are aligned on 32-or 64-byte boundaries. ALIGN2 can give a smaller
module without sacrificing these advantages.

{ALIGN2|ALIGN2=NO |NOALIGN2}

ALIGN2=NO is the default value and can be specified with the keyword
NOALIGN2.

AMODE: Addressing Mode Option
To assign the addressing mode for all the entry points into a program module (the
main entry point, its true aliases, and all the alternate entry points), you should
code the AMODE parameter as follows:

AMODE={24|31|ANY|MIN}

The addressing mode must be either 24, 31, ANY, or MIN. When AMODE=MIN is
coded, the binder assigns one of the other three values to the output module; it
selects the most restrictive mode of all control sections within the output module.
See “Addressing and Residence Modes” on page 22 for more information about
AMODE and RMODE.

The addressing mode assigned in the PARM field is overridden by an addressing
mode assigned in the MODE control statement. However, the values in the PARM
field override the separate addressing modes found in the ESD data for the control
sections or private code where the entry points are located.

AMODE and RMODE values are specified independently, but the values are
checked for conflicts before output processing occurs. See “AMODE and RMODE
Combinations” on page 24 for information on AMODE and RMODE compatibility
and the setting of default values.

The AMODE keyword may also be specified as AMOD.

CALL: Automatic Library Call Option
During processing, the binder automatically searches the library defined in the

| SYSLIB DD statement to resolve external references. Through AUTOCALL control
| statements, the binder can also be prompted to resolve external references against
| a specific library as said references emerge during dynamic binding.

108 DFSMS/MVS V1R4 Program Management

 Options Reference

You can turn this feature off by coding the option NOCALL or NCAL in the PARM
field as follows (or by coding the NORES option):

{NCAL|NOCALL}

When the no automatic library include option is specified, the binder does not
| search any library members to resolve external references. Unresolved external
| references will be treated as severity 4 errors. If this option is specified, you do not

need to use the LIBRARY statement to negate the automatic library call for
selected external references, and you do not need to supply a SYSLIB DD state-
ment.

Unless the LET option is also specified, other errors may still cause the module to
be marked not executable.

| Note: If autocall processing is disabled, references to modules in the C runtime
| library will not be renamed. not be performed.

CASE: Case Control Option
You can control the binder's sensitivity to case by coding the CASE option on the
PARM statement as follows:

CASE={UPPER|MIXED}

The case can be either UPPER or MIXED. When CASE=MIXED is specified,

� The binder distinguishes between upper and lower case letters, treating two
strings as different if their cases do not match exactly.

� The binder does not convert any lower case letters in names encountered in
input modules, control statements, and call parameters.

Binder keywords are always converted to upper case.

CASE=UPPER is the default value, causing conversion of all lower case letters to
upper case during binder processing.

COMPAT: Binder Level Option
| The COMPAT option allows you to specify the compatibility level of the binder. For
| instance, when binding a module you may specify the lowest compatibility value,
| LKED, which will partially alter the binder's behavior and its ultimate output as if
| you had invoked the linkage editor. A higher value like PM2 or PM3 would allow
| you to take advantage of the functions supported by the newer version of program
| modules.

| Awareness of the functionality levels provided by each option value allows you to
| anticipate the behavior of your bound programs as you share them across systems
| which may not support the same functionality. The functionality differences are
| broadly discussed below for each option value.

| If SYSLMOD is allocated to a PDS, the output module is saved as a load module
| regardless of the value of COMPAT. COMPAT(LKED) will alter some of the proc-
| essing.

 Chapter 7. Binder Options Reference 109

 Options Reference

| If SYSLMOD is allocated to a PDSE or an OpenEdition file, the output is saved by
| default as a PO3 format program object. If COMPAT(LKED) is specified, the output
| is still saved as a PO3 format program object although some of the processing may
| be affected (see the description of COMPAT(LKED)).

| COMPAT={PM3|CURRENT|CURR|PM2|PM1|LKED}

| PM3
| specifies the current level of the binder. PM3 is the default unless you specify
| OVLY or specify a PDS in SYSLMOD. PM1 is the default if OVLY is specified.
| If the PDS is SYSLMOD, then this option is ignored because program objects
| cannot reside in a PDS. If COMPAT=PM3 and OVLY are both specified,
| COMPAT=PM3 is changed to PM1. Also, if OS/390 is not at release 2.4 or
| higher, the default is changed to PM2.

| In general COMPAT(PM3) is required if the following features are used:

| � DYNAM(DLL)

| � XOBJ format input to the binder without going through the LE prelinker, or
| rebinding modules containing input from such sources

| � Hidden aliases (from ALIASES control statement)

| � Support for deferred classes or intialized text in merge classes in GOFF
| format input modules or data buffers passed via the binder API.

| PM2, PM3 supports all PM2 and PM1 features.

| In general COMPAT(PM2) (or higher) is required if any of the following features
| are used:

| � User-defined classes passed in GOFF format input as well as certain other
| information supported only in GOFF format

| � Names (from input modules or created by control statements which cause
| renaming) which are longer than 8 bytes.

| � Use of RMODE(SPLIT)

| PM1, PM2 supports all PM1 features.

| If SYSLMOD is allocated to a PDSE and COMPAT(PM1) or COMPAT(LKED) is
| specified, the extended support provided by the use of program objects will be
| available, such as support for text length greater than 16 MB and more than
| 32K ESD entries. Overlay in program objects is supported only by PM1 format.

| LKED
| specifies that certain binder processing options are to work in a manner com-
| patible with the linkage editor. Specific processing affected by this specification
| includes:

| � AMODE/RMODE—Where conflicts exist between the AMODE or RMODE
| of individual entry points or sections and the value specified in the AMODE
| or RMODE option, the option specification will prevail. No warning
| message will be issued and the return code remains unchanged.

| � REUS—If a section is encountered in a module with a lower reusability
| than that specified on the REUS option, the reusability of the module is

110 DFSMS/MVS V1R4 Program Management

 Options Reference

| automatically downgraded. An information message is issued and the
| return code remains unchanged.

DC: Downward Compatible Option
If you have a need to restrict the program library block size to 1024 bytes you can
specify that a maximum record size of 1024 bytes be used for the program library.

Specify the downward compatible attribute by coding DC in the PARM field.

{DC|DC=NO|NODC}

DC affects only load module contents, not program objects.

Specifying the DC attribute sets the block size for the program library data set to
1024 bytes with the following exception. For an existing data set, if the current
block size is greater than 1024 bytes, the load module is written using a maximum
record size of 1024 bytes; the block size in the DSCB entry for the data set is not
changed.

DC=NO is the default value and can also be specified with the keyword NODC.

 DCBS Option
The DCBS option allows you to specify the block size for the SYSLMOD data set in
the DCB parameter of the SYSLMOD DD statement. If the DCBS option is speci-
fied, the existing block size for the SYSLMOD data set can be overridden.

{DCBS|DCBS=NO |NODCBS}

If the DCBS option is specified without a block size value, the binder uses the
maximum record size for the device. If the DCBS option is not specified but a
block size value is provided in the DCB parameter of the SYSLMOD DD statement,
the block size value is ignored.

The minimum block size for the SYSLMOD data set is 256 bytes. For an existing
data set, the minimum block size must be less than the block size in the DSCB.

The specified block size is used unless it exceeds the maximum record size for the
device or it is less than the minimum block size. In those cases, the maximum
record size or minimum block size is substituted, respectively. If DCBS is specified,
each CSECT starts a new block.

The following example shows the use of the DCBS option for an IBM 3380 Direct
Access Storage device:

//LKED EXEC PGM=IEWBLINK,PARM='XREF,DCBS'

//SYSLMOD DD DSNAME=PROJECT.LOADMOD(TEST),DISP=(NEW,CATLG),

// DCB=(BLKSIZE=2344ð),...

As a result, the binder uses a 23440-byte block size for the program.

This option is only valid when processing load modules.

 Chapter 7. Binder Options Reference 111

 Options Reference

DCBS=NO is the default value and can also be specified with the keyword
NODCBS.

| DYNAM: DYNAM Option
| The DYNAM option determines whether the resultant module is to be enabled for
| dynamic binding. If enabled, the module becomes a DLL from which other DLLs'
| imports can be resolved. Similarly, as a DLL, the module can also import symbols
| from other DLLs.

| You may specify the DYNAM option in the PARM field as follows:

| DYNAM={DLL|NO }

| Notes:

| 1. When DYNAM (DLL) is specified, a side file may be generated by the binder.

| 2. If you are using the batch interface of the binder, then the import statement is
| saved in the data set specified in the SYSDEFSD ddname in your JCL. See
| “SYSDEFSD DD Statement” on page 35. If you are using the binder API, then
| the side file is saved in the data set represented by the SIDEFILE specification
| of the files parameter of the STARTDialog API. See Chapter 8, “Using the
| Binder Application Programming Interface” on page 127, section STARTDialog
| function, for additional information.

| 3. The COMPAT=PM3 (or COMPAT=CURRENT) option must be specified for
| DYNAM to take effect.

| 4. The DYNAM option disables the RES option.

 EDIT: Editable Option
To prevent a module from being reprocessed by the binder or linkage editor, you
can mark it as not-editable. To assign the not-editable attribute, code NE or
EDIT=NO in the PARM field.

{EDIT|NE|EDIT=NO}

EDIT is the default value.

If you use the not-editable attribute, you cannot request an EXPAND operation.
You can only use AMASPZAP 18 consecutive times on a load module marked not-
editable, although there is no restriction on the use of AMASPZAP on program
objects. If a program is marked not-editable, and you need to use AMASPZAP on
a load module more than 18 times, or you need to expand a load module or
program object, you must rebuild the program from object modules.

EP: Entry Point Option
The EP option allows you to specify an external name to be used as the entry point
for the program. The EP option is overridden by the ENTRY control statement.
You can specify up to 1024 characters for the name but the JCL PARM field is
limited to 100 characters and an OPTIONS data set is limited to 80 characters per
option, including the “EP=.”

112 DFSMS/MVS V1R4 Program Management

 Options Reference

Specify the EP option on the PARM statement as follows:

EP=name

EXITS: Specify Exits to be Taken Option
The EXITS option allows you to specify an exit(s) to be taken during binder proc-
essing. See “User Exits” on page 218 for more information on user exits.

EXITS=(exit(module-name[,variable]),...)

where

exit
specifies the user exit(s) to be selected. Choose one or more user exit names
from INTFVAL, MESSAGE, and SAVE. See “User Exits” on page 218 for more
information on user exits.

module-name
specifies the name of your loadable exit module

variable
specifies an optional variable to be passed to your exit routine as follows:

For the INTFVAL exit you can specify an option string of up to 64 characters (if
the string is enclosed in quotes, the quotes are removed).

For the MESSAGE exit you can specify one numeric value (specify 4 to sup-
press the message or zero to allow the message to be printed).

FETCHOPT: Fetching Mode Option
The FETCHOPT option allows you to specify how a program object should be
paged-mapped (loaded) into virtual storage for execution. The syntax of the
FETCHOPT option is:

FETCHOPT=({PACK|NOPACK }{,PRIME|NOPRIME })

PACK|NOPACK
allows you to specify whether the program object is page-mapped into virtual
storage on a page or double word boundary. Specifying PACK causes the
program object to be page-mapped into page-aligned virtual storage and then
moved to storage with double word alignment. NOPACK causes the program
to be page-mapped into page-aligned virtual storage without a secondary
move. The PACK option may be specified when virtual storage is limited and
performance is not an issue. It may be appropriate when many small programs
are loaded.

PRIME|NOPRIME
allows you to specify if the program object should be completely read into
virtual storage before execution. When PRIME is coded, all of the program
pages are read before program execution begins. When NOPRIME is coded,
program pages are not read until they are needed during execution.

 Chapter 7. Binder Options Reference 113

 Options Reference

You cannot specify the combination (PACK,NOPRIME) . The default is
(NOPACK,NOPRIME) .

| This option is only valid when processing program objects.

| When a program object is loaded from an OpenEdition file, it is not page-mapped.
| NOPRIME is ignored and the entire program is read in before program execution
| begins. Specifying the PACK option for a program object loaded from an
| OpenEdition file results in doubleword alignment, but does not result in a secondary
| move.

FILL: Fill Character Option
The FILL option lets you specify the character to be used to fill uninitialized areas
of the program object.

| FILL=byte

| The value byte is used to specify a byte value that is used to fill uninitialized areas
| of the program object. All of the hexadecimal (X'00'-X'FF') values are valid. For
| example, FILL=81 fills the area with X'81'.

| The FILL option has no effect on storage added by the EXPAND statement. It also
| has no effect on load modules and PM1-format program objects.

HOBSET: Set High Order Bit Option
The HOBSET option allows you to specify if the high order bit in each V-type
address constant is to be set according to the AMODE of the target symbol.

HOBSET={NO|YES}

YES
specifies the high order bit in each V-type address constant is to be set
according to the AMODE of the target entry point. For AMODE(31) or
AMODE(ANY) targets, the high order bit is set on (B'1'). For AMODE(24), the
high order bit is set off.

Note: This operation is completely reversible. On re-binding, V-cons from
included program objects revert to their original state, unless HOBSET is speci-
fied again.

NO
specifies the high order bit in each V-type address constant is not to be set
according to the AMODE of the target entry point.

NO is the default. The bit is set to off if HOBSET is not specified from any
source.

Note: A module or element loaded below 16 MB may need to operate with
AMODE(31) if it receives control from another module or element loaded above 16
MB. This allows it to access the caller's data areas, such as saving the caller's
registers and accessing parameters and other data belonging to the caller.

114 DFSMS/MVS V1R4 Program Management

 Options Reference

LET: Let Execute Option
Ordinarily, the binder marks an output program module as not-executable when an
error with a severity level of 8 or higher is encountered. You can override this by
specifying a different severity level using the LET option. The binder then marks
the module as not-executable only if an error is encountered whose severity level is
higher than what you specified.

Specify the LET option by coding the PARM field as follows:

{LET={ 0|4|8|12}|NOLET}

LET=4 is the default value. Coding the NOLET keyword will cause the binder to
mark the output module as not-executable when an error occurs with a severity
level of 4 or higher. If LET is specified without a value, LET(8) is assumed.

If LET=4 is specified, XCAL does not need to be specified.

LINECT: Line Count Option
The LINECT option lets you specify the number of lines to be included on each
page of binder output listings, including header lines and blank lines. The LINECT
option is coded in the PARM field as follows:

LINECT=n

The value n can be any integer between 24 and 200, or 0. If you specify 0, there
are no page breaks in the output listing. The default value is LINECT=60.

 LIST: Listing Option
The LIST option allows you to control the type of information included in the
SYSPRINT or SYSLOUT data set. Consult Appendix D, “Interpreting Binder
Output” on page 291 for an explanation and examples of the various kinds of infor-
mation available. Code the LIST option in the PARM field as follows:

{{LIST}
| {LIST={ALL|SUMMARY |STMT|NOIMPORT|NOIMP|OFF}}

{NOLIST}}

The LIST value can be one of the following:

ALL
produces a listing of individual function calls, the load or save summary, control
statements, and messages. Messages IEW2308I and IEW2413I are issued
only if LIST=ALL.

SUMMARY
produces a listing of the load or save summary (including processing options
and module attributes), control statements, and messages.

 Chapter 7. Binder Options Reference 115

 Options Reference

STMT
produces a listing of control statements and binder messages.

| NOIMPORT|NOIMP
| produces the same output as SUMMARY except IMPORT control statements
| are not echoed in message IEW2322I.

OFF
produces a listing that contains only binder messages.

LIST=SUMMARY is the default value. The keyword LIST is equivalent to
LIST=SUMMARY . NOLIST is equivalent to LIST=OFF.

MAP: Program Module Map Option
The binder allows you to request a program module map by coding MAP in the
PARM field as follows:

{MAP|MAP=NO |NOMAP}

When the MAP option is specified, the binder produces a map of the program
module in the diagnostic data set SYSPRINT, SYSLOUT, or SYSTERM. Figure 78
on page 294 contains an example of a program module map.

MAP=NO is the default value and can also be specified with the keyword NOMAP.

MAXBLK: Maximum Block Size Option
You can specify the maximum size of a text block within a load module by coding
the MAXBLK option in the PARM field as follows:

MAXBLK= n

The MAXBLK value n specifies the length of the text block in bytes and must be an
integer between 256 and 32760. This option allows you to ensure that a load
module can be copied to a device with a smaller track size without reblocking.

If you specify value2 on the SIZE option but do not specify a MAXBLK value,
MAXBLK will default to one-half of value2. If you do not specify either value,
MAXBLK defaults to the block size of the data set. If you code the DC option,
MAXBLK and SIZE are both overridden and MAXBLK is set to 1024 bytes.

We recommend that you allow the system to determine the block size for program
libraries. However, if you need to control the block size, we recommend that you
use the MAXBLK option instead of the SIZE option.

This option is only valid when binding load modules.

116 DFSMS/MVS V1R4 Program Management

 Options Reference

MSGLEVEL: Message Level Option
The binder allows you to limit the messages displayed to only those of a specified
severity level and higher. You specify this level by coding the MSGLEVEL option in
the PARM field as follows:

MSGLEVEL={ 0|4|8|12}

The MSGLEVEL value is a message severity level. The default value is
MSGLEVEL=0.

 NAME: NAME Option
The NAME option allows you to specify a name to be used to identify a loaded
program to the system. You can specify the NAME option only when you are using
IEWBLDGO.

You specify the NAME option on the PARM statement as follows:

NAME=name

| The maximum length for the name is 8 characters.

The default value for this option is **GO.

 OL: Only-Loadable Option
The only-loadable option lets you specify that a module can only be brought into
virtual storage using a LOAD macro instruction.

A module with the only-loadable attribute must be entered with a branch instruction
or a CALL macro instruction. If an attempt is made to enter the module with a
LINK, XCTL, or ATTACH macro instruction, the program making the attempt is ter-
minated abnormally by the control program. (See OS/390 MVS Assembler Ser-
vices Guide for information on the LINK, XCTL, and ATTACH macro instructions.)

You specify the only-loadable option in the PARM field as follows:

{OL│OL=NO│NOOL}

OL=NO is the default value and can also be specified with the keyword NOOL.

OPTIONS: Options Option
Instead of providing all processing options in the PARM field, you can create a data
set containing the options. You specify the ddname of the data set by coding the
OPTIONS option in the PARM field as follows:

OPTIONS=ddname

 Chapter 7. Binder Options Reference 117

 Options Reference

ddname identifies a sequential data set of blocked or unblocked 80-byte records.
Options are specified just as they are in the PARM field, separated by commas.
Option records cannot be continued. A blank outside of a quoted string ends proc-
essing of options in that record.

The options data set can contain multiple records with individual parameter sets. It
cannot contain the OPTIONS option. Blank records are ignored. See “Options
Data Set” on page 33 for information on coding the DD statement which defines
the options data set.

 OVLY: Overlay Option
The OVLY option allows you to create a program module in overlay format. A
program with the overlay attribute is placed in an overlay structure as directed by
binder OVERLAY control statements. The program module cannot be refreshable,
reenterable, or serially reusable. AMODE(24) and RMODE(24) are the only valid
addressing and residence options.

If the overlay attribute is specified and no OVERLAY control statements are found
in the binder input, the attribute is ignored.

The overlay attribute must be specified for overlay processing. If this attribute is
omitted, the OVERLAY and INSERT statements are not considered valid, and the
module is not put into overlay structure.

You specify the overlay attribute by coding OVLY in the PARM field as follows:

{OVLY|OVLY=NO |NOOVLY}

See Appendix E, “Designing and Specifying Overlay Programs” on page 305, for
information on the design and specification of an overlay structure.

OVLY=NO is the default value and can also be specified with the keyword
NOOVLY.

| Note:

| The OVLY option overrides any specification of the COMPAT option. That is, if you
| specify the options COMPAT (COMPAT=any value) and OVLY at the same time,
| OVLY prevails and the module is saved in PM1 format if the SYSLMOD data set is
| a PDSE. Otherwise it is saved as a load module in a PDS. For more information
| on COMPAT, see “COMPAT: Binder Level Option” on page 109.

| PATHMODE: Set OpenEdition File Access Attributes for SYSLMOD
| PATHMODE is used to set OpenEdition files attributes for SYSLMOD.

| PATHMODE=char1,char2,char3,char4

| char1,char2,char3,char4
| where characters 1, 2, 3, and 4 each are specified as a digit between 0 and 7
| separated by commas. Each of these digits specifies execution values which

118 DFSMS/MVS V1R4 Program Management

 Options Reference

| override the permission bits set by the PATHMODE parameter in the JCL for
| SYSLMOD.

| The char digit is used as follows:

| character1

| 1xx set user ID of process to user ID of file owner when the program is
| executed

| x1x set group ID of process to group ID of file owner when the program
| is executed

| xx1 keep loaded executable in storage

| character2

| 1xx owner permission to read file

| x1x owner permission to write file

| xx1 owner permission to execute file

| character3

| 1xx group permission to read file

| x1x group permission to write file

| xx1 group permission to execute file

| character4

| 1xx other permission to read file

| x1x other permission to write file

| xx1 other permission to execute file

| OS/390 MVS JCL Reference and OS/390 OpenEdition Command Reference
| have more information on PATHMODE file access attributes.

PRINT: Diagnostic Messages Option
Informational and diagnostic messages are normally written to the SYSLOUT data
set. You can turn off this feature by coding NOPRINT in the PARM field.

{PRINT|NOPRINT}

| If NOPRINT is coded, the SYSLOUT and SYSPRINT data sets are not opened.

RES: Search Link Pack Area Option
During IEWBLDGO processing, the binder automatically searches the link pack
area queue before searching the SYSLIB data set. You can prevent this by coding
the NORES option in the PARM field.

{RES|NORES}

Specifying NORES causes NOCALL to be in effect also.

 Chapter 7. Binder Options Reference 119

 Options Reference

RES is the default.

You cannot use the RES option when you are using IEWBLINK or the linkage
editor.

 REUS: Reusability Options
The REUS option allows you to specify how a program may be reused. (Reusa-
bility means that the same copy of a program module can be used by more than
one task either concurrently or one after another.)

Note that the value of the REUS option always overrides the reusability of any
included load modules or program objects.

The syntax of the REUS option is as follows:

REUS={NONE|SERIAL|RENT|REFR}

The reusability values are:

NONE
The module cannot be reused. A new copy must be brought into virtual
storage for each use. NONE is the default value.

SERIAL
The module is serially reusable. It can only be executed by one task at a time;
when one task has finished executing it another task may begin. A serially
reusable module may modify its own code, but when it is re-executed it must
initialize itself or restore any instructions or data that have been altered.

RENT
The module is reenterable. It can be executed by more than one task at a
time. A task may begin executing it before a previous task has completed exe-

| cution. A reenterable module cannot modify its own code. (MVS protects your
| module's virtual storage so that your module cannot be modified.)

Reenterable modules are also serially reusable.

REFR
The module is refreshable. It can be replaced by a new copy during execution
without changing the sequence or results of processing. A refreshable module
cannot be modified during execution.

A module can only be refreshable if all the control sections within it are
refreshable. The refreshable attribute is negated if any input modules are not
refreshable. Refreshable modules are also reenterable and serially reusable.

The refreshable attribute can be specified for any non-modifiable module.

Alternatively, you can code a REUS option as a single keyword without a value
(REUS, NOREUS, RENT, NORENT, REFR, NOREFR). For example:

//LKED EXEC PGM=IEWBLINK,PARM='RENT,...'

120 DFSMS/MVS V1R4 Program Management

 Options Reference

This alternative form is supported only for backward compatibility. The most restric-
tive positive specification is used to set the reusability attribute. For example, spec-
ifying REFR has the same effect as specifying REUS (REFR) and the module is
marked as refreshable, reenterable, and (serially) reusable.

If the PARM string contains both formats, the REUS(value) instance will override
any reusability options specified without values.

The binder only stores the attribute in the directory entry. It does not check
whether the module is actually reenterable or serially reusable. If the module is
incorrectly marked as reenterable or reusable, execution results are unpredictable;
for example, a protection exception might occur or the program might use another
task's data.

RMODE: Residence Mode Option
To assign the residence mode for all the entry points into a program module, you
can code the RMODE parameter as follows:

RMODE={24|ANY|SPLIT}

The residence mode is either 24, ANY or SPLIT.

The residence mode assigned in the PARM field is overridden by a residence mode
assigned in the MODE control statement, but overrides the accumulated residence
mode found in the ESD data for the control sections or private code in the input.

AMODE and RMODE values are specified independently, but checked for conflicts
before output processing occurs. See “AMODE and RMODE Combinations” on
page 24 for information on AMODE and RMODE compatibility and the setting of
default values.

| RMODE(SPLIT) When an RMODE(SPLIT) module is loaded, the LOAD service
| returns a length of zero. When you use LOAD, the CSVQUERY service should be
| used with the OUTXTLST parameter to obtain information about the address (load
| point) and length of each program segment. See CSVQUERY in OS/390 MVS
| Assembler Services Guide for more information.

RMODE(SPLIT) specifies the program text (class B_TEXT) can be split into two
class segments according to the RMODE of each section. Rules for splitting the
text are:

� If RMODE(SPLIT) is specified, the B_TEXT class of each included module is
distributed between the two class segments according to the RMODE of each
section contained in the module.

� If RMODE(SPLIT) is not specified, either through the binder execution param-
eter or a control statement, then included text in classes B_TEXT, B_TEXT24
and B_TEXT31 are combined into B_TEXT class and loaded into memory
using the existing RMODE resolution rules.

� If the OVLY option is specified, RMODE is reset to 24 and the split module is
not produced.

� If the module is to be the target of a directed load (where the issuer of the
LOAD is providing the storage in which to load the module), the two class seg-

 Chapter 7. Binder Options Reference 121

 Options Reference

ments are concatenated and loaded into storage as a single unit. The module
length field in the directory, PMAR_STOR, indicates the combined length of the
program object. PMAR_STOR is in the IGWPMAR DSECT obtained when you
issue the DESERV macro function=GET. Or the value is also contained in
PDS2VSTR in IHAPDS when BLDL is issued. Both fields are shown in
Appendix K, “Data Areas” on page 433.

� If RMODE(SPLIT) is specified, consider the HOBSET option. If you specify
HOBSET, the high order bit of each V-type address is set according to the
AMODE of the called entry point.

The keyword RMODE can also be specified as RMOD.

| SCTR: Scatter Load Option
| SCTR causes special control tables to be built in the output load module. This
| information is used by the system when loading the nucleus. Otherwise the tables
| are ignored. The option applies only when saving a load module.

| The syntax of the SCTR option is as follows:

| SCTR={NO|YES}

| The default is NO.

| SCTR or SCTR=YES must be specified when building a module which represents
| the system nucleus.

SIZE: Space Specification Option
The SIZE option allows you to specify the amount of space available for processing
load modules. You can specify the amount of virtual storage the binder can use
and the size of the load module buffers. If you specify SIZE when you bind
program objects, the value subparameter is ignored. Also, if you specify
WKSPACE, the first subparameter of WKSPACE overrides the first subparameter
of SIZE.

The syntax of the SIZE option is:

SIZE={{(value1[K], value2[K])}
or {(value1[K])}
or {(value1[K],)}
or {(, value2[K])}}

value1
specifies the maximum number of bytes of available virtual storage. For the
binder, the minimum value is 16 KB (16384) and the maximum value is 16000
KB (16 MB).

value2
specifies the number of bytes of storage to be allocated for the load module
buffer. For the binder, the minimum value is 512 and the maximum value is
65520 (approximately 64KB).

122 DFSMS/MVS V1R4 Program Management

 Options Reference

The binder only uses this value to determine the block size of the load module.
If MAXBLK is not specified, the block size is set to half of value2.

When coded in the PARM field, value1 and value2 parameters are enclosed in
parentheses. For example:

//LKED EXEC PGM=IEWBLINK,PARM='SIZE=(2048K,32K),...'

Both value1 and value2 can be expressed as integers specifying the number of
bytes of virtual storage or as nK, where “n” represents the number of 1KB (1024) of
virtual storage.

The binder provides default values for the SIZE option. The default values are
used if you do not specify any values, or if you specify one or more of the values
incorrectly. These defaults should be adequate for most binds, relieving you from
needing to specify the SIZE option. We recommend that you do not use the SIZE
option. Block size for load modules should be specified with the MAXBLK option
(see “MAXBLK: Maximum Block Size Option” on page 116), and workspace can
be allocated with the WKSPACE option (see “WKSPACE: Working Space Specifi-
cation Option” on page 125).

SSI: System Status Index Option
You can specify hexadecimal information to be placed in the system status index
by coding the SSI option in the PARM field as follows:

SSI=ssi-info

ssi-info is a hexadecimal value of exactly 8 digits. This is placed in the system
status index of the output module library directory entry.

If a SETSSI control statement has been coded, the value specified there overrides
any value set by this option.

STORENX: Store Not-Executable Module
Normally, the binder does not replace an executable module in a program library
with a not-executable version. You can override this standard action with the
STORENX option.

{STORENX|STORENX=NO|NOSTORENX}

When the STORENX option is coded, a new module replaces an existing module of
the same name regardless of the executable status of either module. If the NAME
statement is provided, the replace option (R) must have been coded.

STORENX=NO is the default value and can also be specified with the keyword
NOSTORENX.

 Chapter 7. Binder Options Reference 123

 Options Reference

TERM: Alternate Output Option
You can request that the numbered error and warning messages be written to the
data set defined by a SYSTERM DD statement by coding TERM in the PARM field.

{TERM|TERM=NO|NOTERM}

When the TERM option is specified, a SYSTERM DD statement must be provided.
If it is not, the TERM option is ignored and messages are written only to the
SYSPRINT or SYSLOUT data set.

Output specified by the TERM option supplements printed diagnostic information.
When TERM is used, binder error/warning messages appear in both output data
sets.

TERM=NO is the default value and can also be specified with the keyword
NOTERM.

 TEST: Test Option
A program with the test attribute contains information about internal symbols in a
form that can be accessed with the TSO TEST command. Symbol tables to be
used by the TSO TEST command should be included in the input to the binder,
which will place them in the output module. If the test attribute is not specified, any
symbol tables in the input are ignored by the binder and are not placed in the
output module. If the test attribute is specified, and no symbol table input is
received, the output load module will not contain symbol tables to be used by the
TSO TEST command.

Specifying the TEST option is not useful unless you are going to use the TSO
TEST command on the program. The symbol tables in the program are ignored
except when using the TSO TEST command.

You assign the test attribute by coding TEST in the PARM field.

{TEST|TEST=NO|NOTEST}

The TEST option is only valid for program modules that are stored in a program
library for later execution.

TEST=NO is the default option and can also be specified with the keyword
NOTEST.

| UPCASE: UPCASE Option
| This option indicates whether additional renaming should be done when symbols
| remain unresolved. Unresolved function references which are marked as
| renameable and which are not imported are set to uppercase if they are eight char-
| acters or less in length. Also, underscore ('_') is mapped to '@' and names begin-
| ning with IBM, CEE, or PLI have their respective prefixes changed to IB$, CE$, and
| PL$. After the renaming process is complete, an attempt to resolve the symbols
| using the new names is made. Traditional object modules do not support the

124 DFSMS/MVS V1R4 Program Management

 Options Reference

| renameable bit and thus symbols originating from them are not affected by the
| UPCASE option.

| The UPcase option provides binder function roughly equivalent to the prelinker
| UPCASE option.

| The UPCASE option can be specified in the PARM field as follows:

| UPCASE={YES|NO}

| Note: The COMPAT=PM3 (or COMPAT=CURRENT) option must be specified or
| defaulted to for UPCASE to take effect.

WKSPACE: Working Space Specification Option
The WKSPACE option allows you to specify the amount of virtual storage available
to the binder during processing.

The syntax of the WKSPACE option is:

WKSPACE=([value1][,value2])

value1
is the maximum amount of virtual storage below the 16 MB line, in units of
1KB, that is available for binder processing.

value2
is the maximum amount of virtual storage above the 16 MB line, in units of
1KB, that is available for binder processing.

For example:

//LKED EXEC PGM=IEWBLINK,PARM='WKSPACE=(96,1024),...'

If value1 is not specified and the SIZE option has been specified, value1 is set to
value1 as specified on the SIZE option. If the SIZE option is not specified, the
binder assumes that it can use all available virtual storage below 16 MB. We
recommend that you use the WKSPACE option with the MAXBLK option and in
place of the SIZE option.

If value2 of the WKSPACE option is not specified, the binder allocates workspace
from above 16 MB as needed until no more space is available.

Under normal circumstances, the binder can determine its own workspace require-
ments. You should not need to specify the WKSPACE parameter unless you have
unusual virtual storage considerations.

We recommend a minimum of 96 KB below 16 MB and 1024 KB above 16 MB for
all binder processing.

 Chapter 7. Binder Options Reference 125

 Options Reference

XCAL: Exclusive Call Option
You use the XCAL option when valid exclusive references have been made
between segments of an overlay program. A warning message is issued for each
valid exclusive reference, but the binder marks the output module as executable.

See “References between Segments” on page 310 for information about valid
exclusive references.

To specify the exclusive call option, code XCAL in the PARM field.

{XCAL|XCAL=NO |NOXCAL}

The OVLY attribute must also be specified when you use the XCAL option. For
example:

//LKED EXEC PGM=IEWBLINK,PARM='XCAL,OVLY,...'

XCAL=NO is the default value and can also be specified with the keyword
NOXCAL .

XREF: Cross Reference Table Option
You can request a cross-reference table of a program module by coding XREF in
the PARM field.

{XREF|XREF=NO|NOXREF}

When the XREF option is specified, the binder produces a cross-reference table of
the program module in the SYSPRINT data set. Figure 81 on page 299 contains
an example of a cross reference table. If you also need a module map, you must
request one using the MAP option.

XREF=NO is the default value and can also be specified with the keyword
NOXREF.

126 DFSMS/MVS V1R4 Program Management

 Using the API

Chapter 8. Using the Binder Application Programming
Interface

This chapter contains General-use Programming Interface and Associated Guid-
ance Information.

This section describes how an application program, system service, or utility can
request binder services under program control. Your program can use the binder
application programming interface to invoke individual services such as Include, Set
Option, Get Data, and Get ESD. By combining calls to these services in a logical
order, your program can perform operations on program modules.

The binder application programming interface consists of assembler macros and
user exit points. The IEWBIND macro provides the invoking program with access
to the binder services. The IEWBUFF macro provides maps of data areas passed
as parameters on the IEWBIND macro invocation. The message user exit allows
you to suppress printing of a message. The save user exit allows you to retry a
failed attempt to store a member or alias name. The interface validation exit allows
your exit routine to examine descriptive data for both caller and called at each
external reference.

The binder can be called from programs written in assembler and in other lan-
guages. If your program is written in a language other than assembler, you will
need to encode the parameter lists for each binder call. See “Invoking the Binder
Without the Macros” on page 141 for tips on how to invoke the binder from non-
assembler language programs.

Understanding Binder Programming Concepts
Before you begin designing programs for the binder application programming inter-
face, you should understand several of its programming concepts.

dialog A programmed session with the binder is called a binder dialog.
You begin the session with a request to start a dialog. This
request establishes the environment for binder processing
during that dialog, including obtaining work space, initializing
control blocks, and specifying ddnames for the standard data
sets to be used.

Your program can start more than one dialog and maintain
more than one dialog at the same time. The dialogs are inde-
pendent. You can perform operations on more than one dialog
concurrently, but you cannot pass binder data directly from one
dialog to another.

When any dialog is ended, all buffers and control information
relating to that dialog are deleted.

dialog token Each dialog is identified by a unique dialog token. The dialog
token is created when you request a new dialog. You use the
token corresponding to a specific dialog when you request ser-
vices, so the binder can perform the services on the correct
input and return the desired results to the correct dialog. The
token is invalidated when the dialog is ended.

 Copyright IBM Corp. 1991, 1997 127

 Using the API

workmod An area of working storage used to create or operate on a
program module is called a workmod. After a dialog has been
established, your program issues requests to create a
workmod, to reset a workmod to the null state, or to delete a
workmod. At least one workmod must be created before any
module operations can be requested.

A dialog may have many workmods associated with it, but each
workmod is associated with only one dialog. Binder-generated
data cannot be passed between workmods. Ending a dialog
causes any remaining workmods associated with it to be
deleted.

workmod token Each workmod is identified by a unique workmod token. The
workmod token is created when the request for a new workmod
is made. The workmod token associates the workmod with a
particular dialog. Your program must pass the token as a
parameter on all requests involving that workmod. The token is
invalidated when either the workmod is deleted or the dialog is
ended.

processing intent The processing intent of a workmod indicates whether the
program is to be rebound and determines whether or not
editing services can be performed on the modules included in
the workmod. The processing intent is set to either bind or
access when the workmod is created. Bind allows editing of
the modules; access does not. See “Processing Intents” on
page 136 for detailed information.

element An element is a named portion of module data in a workmod
that is directly addressable by the binder. Program modules
logically consist of elements. Each element is identified by its
data class identifier and, optionally, a section name.

Class A class identifier is a required descriptor for each element. It
identifies the type and the format of the data element and
determines the operations that can be performed on it. The
following binder defined classes are valid:

B_TEXT Relocatable text

B_PRV Pseudoregister vector

B_ESD External symbol dictionary

B_RLD Relocation dictionary

B_IDRB Binder identification record

B_IDRL Language processor identification record

B_IDRU User-specified identification record (from IDENTIFY
control statement)

B_IDRZ AMASPZAP identification record

B_SYM Internal symbol table records

B_MAP Module map

| B_TEXT24 Text loaded below the line

| B_TEXT31 Text loaded above the line

128 DFSMS/MVS V1R4 Program Management

 Using the API

| B_LIT Load information table

| B_IMPEXP IMPORT/EXPORT table

| B_PARTINIT Part initializers

Classes are generally referred to without the 'B_' prefix, but
this prefix is required when a class is specified as a parameter
on any function call.

In addition to the binder defined classes shown above,
compiler-defined and class names which are defined by you (or
your system programmer) can be specified on all calls.
Compiler-defined class names have a prefix of “C_” and cannot
exceed 16 bytes. User-defined class names can contain any
characters except for underscore (“_”) in the second position,
and are limited to 14 bytes.

section A section name is a programmer-, assembler-, or compiler-
assigned name of an element within a specific class. For
control and common sections, the section name is the CSECT
or common section name.

Some elements do not relate directly to any particular section
(the binder identification records, for example). The binder
assigns these elements unique section names.

A program module can be visualized as a two-dimensional grid with the class type
on one axis and the section name on the other, as shown in Figure 27 on
page 130. Any class type may appear in more than one section, and any section
can contain elements in multiple classes. Some elements relate to the entire
module, not to any particular section, and do not have a section name.

 Chapter 8. Using the Binder Application Programming Interface 129

 Using the API

C L A S S

 B_IDRB B_IDRL B_ESD B_RLD B_TEXT

 ┌─────────┐

│ Not │

│ section │

│ related │

 └─────────┘

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐

 │ │ │ │ │ │ │ │

MAIN │ MAIN │ │ MAIN │ │ MAIN │ │ MAIN │

 │ │ │ │ │ │ │ │

└─────────┘ └─────────┘ └─────────┘ └─────────┘

 S
 E
 C ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐

 T │ │ │ │ │ │ │ │

 I SUBA │ SUBA │ │ SUBA │ │ SUBA │ │ SUBA │

 O │ │ │ │ │ │ │ │

 N └─────────┘ └─────────┘ └─────────┘ └─────────┘

 ┌─────────┐ ┌─────────┐

 │ │ │ │

 SUBB │ SUBB │ │ SUBB │

 │ │ │ │

 └─────────┘ └─────────┘

Figure 27. Data Items. The workmod shown in this example contains three sections, MAIN,
SUBA, and SUBB. The B_IDRB item shown does not relate to a particular section. Note
that items do not need to exist for all class and section combinations.

| VERSION Number in an API Call
| The version of an API call determines the format of the parameter list. Although
| many of the parameter lists are the same for all versions, the formats documented
| here are specifically for version 3. Please see earlier editions of this book for
| earlier DFSMS/MVS releases for other formats. For those API calls that pass data
| buffers, the version number in the buffer header must match the version number in
| the parameter list. The version in the buffer header determines the format of the
| data in the buffer. The default is VERSION=1. For new programs, we recommend
| that VERSION=3 be used.

 Binder Dialogs
Your program conducts a dialog with the binder using either the IEWBIND and
IEWBUFF assembler macros or the equivalent definitions and statements for other
programming languages.

130 DFSMS/MVS V1R4 Program Management

 Using the API

Assembler coding summaries of the IEWBIND and IEWBUFF macros are provided
in Figure 28 on page 133 and Figure 32 on page 145. Certain of the function
calls are required to establish and terminate the dialog, workmod, and buffers. You
select among the remaining calls according to the needs of your program. The
following sequence of function calls is recommended:

1. Use STARTD to begin the dialog and to establish a processing environment. A
dialog token is returned.

2. Use CREATEW to create a workmod and associate it with the dialog. You
pass the dialog token received from the STARTD call and receive a workmod
token in return. You specify processing intent on CREATEW as either
ACCESS or BIND.

3. Use SETO for setting options and module attributes. You pass either the
dialog token or the workmod token. If a dialog token is passed, the options
and attributes become the defaults for all workmods attached to that dialog. If
a workmod token is specified, any specified options apply only to that workmod.

4. Use INCLUDE to bring one or more modules into the workmod. All control
statements and object and program modules are brought into a workmod via
the INCLUDE call. If INTENT=ACCESS, one and only one program module
can be included in the workmod at a time. Before including another program
module, the workmod must be reset.

5. Use ALTERW to make selective changes to symbols or sections in modules
already in the workmod or yet to be included. By choosing either the IMMED
or NEXT mode of operation, you indicate whether the alteration is applied
globally to all modules in the workmod or only to the next module included into
the workmod.

6. Several of the function calls do not take place immediately, but are deferred
until later in the processing cycle. ALIGNT , INSERTS, ORDERS, and STARTS
affect the overall structure of the module and are deferred until BINDW. ADDA
provides for specification of aliases and is deferred until SAVEW. You may
request these functions in any order, but they must be received prior to the
BINDW call.

7. Use the GETD, GETE, and GETN function calls to pass module data between
the workmod and your program. Before you can use these function calls, your
program must define and allocate buffers. Use the GETBUF and INITBUF
functions of the IEWBUFF macro to allocate and initialize storage areas to
contain the data. Use the MAPBUF function to define DSECT mappings of the
areas.

8. Use the BINDW function to instruct the binder to resolve all external references
and calculate relocatable address constants. Automatic library call resolves
any unresolved external references. Text alignment, ordering, and overlay seg-
mentation are all done at this time.

Use SETL to specify special call libraries for resolving external references or to
indicate that certain references are not to be resolved. SETL requests must
precede BINDW.

If INTENT=BIND, you must issue the BINDW request before any LOADW or
SAVEW for a module. If INTENT=ACCESS, a BINDW request is rejected.
Binding is required if more than one module has been included, or if other
changes have taken place which would affect the size or structure of the
module, such as reordering sections.

 Chapter 8. Using the Binder Application Programming Interface 131

 Using the API

Once binding has taken place, no further modifications to workmod are per-
mitted.

9. Use LOADW or SAVEW to dispose of the module in workmod. LOADW
requests that the module be loaded into virtual storage in a format suitable for
execution. SAVEW requests that the module be saved in a data set. You can
issue both requests for a module in either order.

10. Use DELETEW to delete the workmod and free all associated resources. Use
RESETW to free all of the module data in the designated workmod, but to
retain the workmod structure. RESETW is functionally equivalent to issuing
DELETEW and CREATEW requests in sequence.

Delete and reset requests are rejected if the workmod is in an altered state.
You can force the deletion of an altered workmod by specifying PROTECT=NO
on the DELETEW request.

11. When your program is finished processing all of the data obtained from the
workmod, use the IEWBUFF FREEBUF function to free the storage for the
data.

12. Use ENDD to end the dialog and to free all remaining resources. An ENDD
request is rejected if any workmods remain, but can be forced by specifying
PROTECT=NO.

| Refer to the “Programming Example for the Binder API” on page 225 in this
| chapter for a typical assembler language application of the binder APIs.

132 DFSMS/MVS V1R4 Program Management

 Using the API

 IEWBIND FUNC=ADDA Add alias
 ,WORKMOD=workmod
 ,ANAME=aname
 [,ENAME=ename]
 [,AMODE=amode]

 FUNC=ALIGNT Align text
 ,WORKMOD=workmod
 ,SECTION=section

 FUNC=ALTERW Alter workmod
 ,WORKMOD=workmod
 ,OLDNAME=oldname
 ,ATYPE={CHANGE|C}
 ,NEWNAME=newname

 ,ATYPE={DELETE|D}

 ,ATYPE={EXPAND|E}
 ,COUNT=count
 ,CLASS=class

 ,ATYPE={REPLACE|R}
 ,NEWNAME=newname

 [,MODE={NEXT|N|IMMED|I}]

 | FUNC=AUTOC Autocall
 ,WORKMOD=workmod
 ,{CALLIB=callib|PATHNAME=pathname}

 FUNC=BINDW Bind workmod
 ,WORKMOD=workmod
 [,CALLIB=callib]

 FUNC=CREATEW Create workmod
 ,DIALOG=dialog
 ,WORKMOD=workmod
 ,INTENT={BIND|B|ACCESS|A}

 FUNC=DELETEW Delete workmod
 ,WORKMOD=workmod
 [,PROTECT={YES|Y|NO|N}]

| FUNC=DLLREN DLL rename
 ,WORKMOD=workmod
 ,RENAMEL=renamelist

Figure 28 (Part 1 of 4). IEWBIND Function Call Summary

 Chapter 8. Using the Binder Application Programming Interface 133

 Using the API

 FUNC=ENDD End dialog
 ,DIALOG=dialog
 [,PROTECT={YES|Y|NO|N}]

 FUNC=GETD Get data
 ,WORKMOD=workmod
 ,CLASS=class
 [,SECTION=section]
 ,AREA=area
 ,CURSOR=cursor
 ,COUNT=count

 FUNC=GETE Get ESD
 ,WORKMOD=workmod
 [,SECTION=section]
 [,RECTYPE=rectype]
 [,{OFFSET=offset|SYMBOL=symbol}]
 [,CLASS=class]
 ,AREA=area
 ,CURSOR=cursor
 ,COUNT=count

 FUNC=GETN Get names
 ,WORKMOD=workmod
 [,AREA=area]
 ,CURSOR=cursor
 ,COUNT=count
 ,TCOUNT=tcount
 [,NTYPE={CLASS|C|SECTION|S}]

 | FUNC=IMPORT Import symbol
 ,WORKMOD=workmod
 ,ITYPE={CODE|C|DATA|D}
 ,DLLNAME=dllname
 ,INAME=iname

 FUNC=INCLUDE Include
 ,WORKMOD=workmod
 ,INTYPE={NAME|N}
 ,DDNAME=ddname[,MEMBER=member]
 |,PATHNAME=pathname

 ,INTYPE={POINTER|P}
 ,DCBPTR=dcbptr
 ,DEPTR=deptr

 ,INTYPE={TOKEN|T}
 ,EPTOKEN=eptoken

 [,ATTRIB={NO|N|YES|Y}]
 [,ALIASES={NO|N|YES|Y}]

Figure 28 (Part 2 of 4). IEWBIND Function Call Summary

134 DFSMS/MVS V1R4 Program Management

 Using the API

 FUNC=INSERTS Insert section
 ,WORKMOD=workmod
 ,SECTION=section

 FUNC=LOADW Load workmod
 ,WORKMOD=workmod
 ,EPLOC=eploc
 ,IDENTIFY={NO|N}
 ,XTLST=xtlst

 ,IDENTIFY={YES|Y}
 [,XTLST=xtlst]
 [,LNAME=lname]

 FUNC=ORDERS Order section
 ,WORKMOD=workmod
 ,SECTION=section

FUNC=PUTD Put workmod data
 ,WORKMOD=workmod
 ,CLASS=class
 ,SECTION=section
 [,AREA=buffer]
 [,CURSOR=cursor]
 [,COUNT=count]
 [,NEWSECT={NO|YES}]
 [,ENDDATA={NO|YES}]

 | FUNC=RENAME Rename symbol
 ,OLDNAME=oldname
 ,NEWNAME=newname

 FUNC=RESETW Reset workmod
 ,WORKMOD=workmod
 ,INTENT={BIND|B|ACCESS|A}
 [,PROTECT={YES|Y|NO|N}]

 FUNC=SAVEW Save workmod
 ,WORKMOD=workmod
 [,MODLIB=modlib]
 [,SNAME=sname]
 [,REPLACE={NO|N|YES|Y}]

 FUNC=SETL Set library
 ,WORKMOD=workmod
 ,SYMBOL=symbol
 [,LIBOPT={CALL|C|NOCALL|N|EXCLUDE|E}]

| [,CALLIB=callib|PATHNAME=pathname]

Figure 28 (Part 3 of 4). IEWBIND Function Call Summary

 Chapter 8. Using the Binder Application Programming Interface 135

 Using the API

 FUNC=SETO Set options
 {,DIALOG=dialog|,WORKMOD=workmod}
 [,OPTION=option]
 [,OPTVAL=optval]
 [,PARMS=parms]

 FUNC=STARTD Start dialog
 ,DIALOG=dialog
 [,FILES=files]
 [,EXITS=exits]
 [,OPTIONS=options]
 [,PARMS=parms]

 FUNC=STARTS Start segment
 ,WORKMOD=workmod
 ,ORIGIN=origin
 [,REGION={NO|N|YES|Y}]

 | [,VERSION=1|2|3]
 [,RETCODE=retcode]
 [,RSNCODE=rsncode]

[,MF=S] Macro standard form
[,MF=(L,mfctrl,mfattr|0D)] Macro list form
[,MF=(E,mfctrl,COMPLETE)] Macro execute form

Figure 28 (Part 4 of 4). IEWBIND Function Call Summary

 Processing Intents
Each time you create or reset a workmod, you associate it with a processing intent.
The intent determines the services and options that are valid for the workmod.

CREATEW and RESETW require you to specify the processing intent using the
INTENT parameter. The two values are:

BIND The workmod is bound before being saved or loaded. All binder func-
tions may be requested.

ACCESS The workmod is not bound before being saved or loaded. No ser-
vices that may alter the size or structure of the program module can
be requested.

Figure 29 lists each call and indicates whether it is required, optional, or not
allowed within a workmod of either processing intent.

136 DFSMS/MVS V1R4 Program Management

 Using the API

Figure 29. Processing Intent and Calls

FUNCTION INTENT=BIND INTENT=ACCESS

ADDA Optional Optional

ALIGNT Optional Not allowed

ALTERW Optional Not allowed

| AUTOCALL| Optional| Not allowed

BINDW Required Not allowed

CREATEW Required Required

DELETEW Optional Optional

| DLLRENAME| Optional| Optional

ENDD Required Required

GETD Optional Optional

Note: If INTENT=BIND the module must be bound before GETD calls can be executed.

GETE Optional Optional

Note: If INTENT=BIND the module must be bound before GETE calls can be executed.

GETN Optional Optional

Note: If INTENT=BIND the module must be bound before GETN calls can be executed.

| IMPORT| Optional| Not allowed

INCLUDE Required Required

Note: If INTENT=ACCESS, only one module can be included in a workmod. If
INTENT=BIND, DDNAME and optionally MEMBER must be specified.

INSERTS Optional Not allowed

LOADW Optional Optional

ORDERS Optional Not allowed

| RENAME| Optional| Not allowed

RESETW Optional Optional

SAVEW Optional Optional

SETL Optional Not allowed

SETO Optional Optional

Note: If INTENT=ACCESS, many of the options may be ignored.

STARTD Required Required

STARTS Optional Not allowed

Setting Options With the Binder API
Many options can be set by using STARTD and SETO to specify options and
values. You can set most of the options that can be set in the PARM field of the
EXEC statement and there are a few options for use only through the API func-
tions.

Any option can be set using STARTD. All options except the CALLERID, LINECT,
and WKSPACE options can also be set using the SETO option. Negative
keywords (for example, NOLIST or NOMAP) cannot be used with STARTD and
SETO. These options are set by assigning the primary option the value NO.

 Chapter 8. Using the Binder Application Programming Interface 137

 Using the API

Figure 30 on page 138 shows the list of options with the allowable and default
values. Numeric values are coded as numeric character strings unless otherwise
specified. The table also references any corresponding batch options.

Figure 30 (Page 1 of 3). Setting Options With the Binder API

Option

Description

Allowable
Values

Default
Value

AC Sets the APF authorization code in the saved
module. Also see “ALIASES: ALIASES
Option” on page 107.

0 - 255 0

| ALIASES| Allows you to mark external symbols as aliases
| for symbol-resolution purposes.
| ALL/NO| NO

ALIGN2 Requests 2KB page alignment. Also see
“ALIGN2: 2KB Page Alignment Option” on
page 108.

Y, N N

AMODE Sets the addressing mode. Also see “AMODE:
Addressing Mode Option” on page 108.

24, 31, ANY, MIN Derived in
ESD

CALL/NCAL Allows or disallows automatic library call. Also
see “CALL: Automatic Library Call Option” on
page 108.

Y, N Y

CALLIB Specifies the library for automatic call. ddname of 1 to 8 characters None

CALLERID Specifies string to be printed at the top of each
page of the binder output listings.

Character string of up to 80
bytes

None

CASE Specifies case sensitivity for symbols. Also see
“CASE: Case Control Option” on page 109.

UPPER, MIXED UPPER

COMPAT Specifies binder compatibility level. LKED, PM1, PM2, PM3 PM2, PM3

DC Allows compatibility with down-level software.
Also see “DC: Downward Compatible Option”
on page 111.

Y, N N

DCBS Allows the block size of the SYSLMOD data set
to be reset for PDS only. Also see “DCBS
Option” on page 111.

Y, N N

| DYNAM| Determines whether a module being bound is
| to be enabled for dynamic linking.
| DLL, NO| NO

EDIT Requests external symbol data to be retained,
allowing later reprocessing. Also see “EDIT:
Editable Option” on page 112.

Y, N Y

EXITS Specifies user exits. INTFVAL None

EP Specifies the program entry point
(name,[offset]). Also see “EP: Entry Point
Option” on page 112.

(symbol of up to 1024 char-
acters [,integer value])

None

FETCHOPT Sets loading options for program objects. Also
see “FETCHOPT: Fetching Mode Option” on
page 113. PACK and PRIME are ignored for
OpenEdition files.

PACK or NOPACK,
PRIME or NOPRIME

NOPACK,
NOPRIME

FILL Specifies that uninitialized areas of module are
to be filled with the byte provided.

Any byte value None

HOBSET Instructs the binder to set the high-order bit in
V-type adcons according to the AMODE of the
target.

YES|NO No

138 DFSMS/MVS V1R4 Program Management

 Using the API

Figure 30 (Page 2 of 3). Setting Options With the Binder API

Option

Description

Allowable
Values

Default
Value

LET Allows errors of a specified severity to be
accepted. Also see “LET: Let Execute Option”
on page 115.

0, 4, 8, 12 4

LINECT Specifies number of lines per page of the
binder output listings. Also see “LINECT: Line
Count Option” on page 115.

Integer value 60

LIST Controls contents of the output listings. Also
see “LIST: Listing Option” on page 115.

OFF, SUMMARY, STMT,
ALL

NOIMPORT, NOIMP

SUMMARY

LNAME Specifies the program name to be identified to
the system. Also see LNAME parameter
description in “LOADW: Load Workmod” on
page 188.

Symbol of up to 8 characters

MAP Requests a module map. Also see “MAP:
Program Module Map Option” on page 116.

Y, N N

MAXBLK Specifies the maximum record length for the
text of a program module. Also see “MAXBLK:
Maximum Block Size Option” on page 116.

256 - 32760 32760

MODLIB Specifies a ddname for the output program
library. Also see MODLIB parameter
description in “SAVEW: Save Workmod” on
page 201.

ddname of up to 8 characters None

MSGLEVEL Specifies the minimum severity level of mes-
sages to be issued. Also see “MSGLEVEL:
Message Level Option” on page 117.

0, 4, 8, 12, 16 0

OL Limits how the program can be brought into
virtual storage. Also see “OL: Only-Loadable
Option” on page 117.

Y, N N

OVLY Requests the program be bound in overlay
format. Also see “OVLY: Overlay Option” on
page 118.

Y, N N

PRINT Requests that messages be written to the
SYSLOUT or SYSPRINT data set. Also see
“PRINT: Diagnostic Messages Option” on
page 119.

Y, N Y

RES Requests that the link pack area queue be
searched to resolve references for programs
that will not be saved.. Also see “RES: Search
Link Pack Area Option” on page 119.

Y, N N

REUS Specifies the reusability characteristics of the
program module. Also see “REUS: Reusability
Options” on page 120.

NONE, SERIAL, RENT,
REFR

NONE

RMODE Sets the residence mode. Also see “RMODE:
Residence Mode Option” on page 121.

24, ANY, SPLIT Derived from
ESD

SCTR Requests scatter format. Used only for MVS
system nucleus load module.

Y, N N

 Chapter 8. Using the Binder Application Programming Interface 139

 Using the API

Figure 30 (Page 3 of 3). Setting Options With the Binder API

Option

Description

Allowable
Values

Default
Value

SNAME Specifies a member name for a saved program
module. Also see SNAME parameter
description in “SAVEW: Save Workmod” on
page 201.

Member name of 1 to 1024
characters

None

SSI Specifies a system status index. Also see
“SSI: System Status Index Option” on
page 123.

8 hexadecimal digits None

STORENX Specifies saving not-executable modules. Also
see “STORENX: Store Not-Executable
Module” on page 123.

Y, N N

TERM Requests that messages be sent to the ter-
minal data set SYSTERM.. Also see “TERM:
Alternate Output Option” on page 124.

Y, N Y

| UPCASE| While processing XOBJs, determines whether
| symbols should be upper-cased before final-
| izing symbol resolution during binding.

| YES ,NO| NO

TEST Requests that the program module be prepared
for the TSO TEST command. Also see “TEST:
Test Option” on page 124.

Y, N N

WKSPACE Specifies the amount of space available for
binder processing, both below and above the
16 MB line (value1, value2). Also see
“WKSPACE: Working Space Specification
Option” on page 125.

Values specified in units of
1KB, with a minimum of

96KB below 16 MB and 1024
KB above 16 MB

All available
space

XCAL Requests that valid exclusive references
between program segments of an overlay
program module be allowed. Also see “XCAL:
Exclusive Call Option” on page 126.

Y, N N

XREF Requests printing of a cross-reference table.
Also see “XREF: Cross Reference Table
Option” on page 126.

Y, N N

Invoking the Binder API

Setting the Invocation Environment
Your program's environment must have the following characteristics before invoking
the API:

� Enabled for I/O and external interrupts
� Holds no locks
� In task control block (TCB) mode
� With PSW key equal to the job step TCB key
� In primary address space mode

| � In 31-bit addressing mode
� In either supervisor or problem program state
� With no FRR's on the current FRR stack.

140 DFSMS/MVS V1R4 Program Management

 Using the API

You can call the binder in both problem program and supervisor state and in any
PSW storage key.

If your program is written in a high-level programming language, you must ensure
that your program is in 31-bit addressing mode before calling the IEWBIND service.
If your program is written in assembler language, the IEWBIND macro takes care of
any addressing mode changes in a transparent manner.

All requests are synchronous. The binder returns control to your program after the
completion of the requested service. Services may not be requested in cross-
memory mode.

Loading the Binder
The IEWBIND macro issues the LOAD macro for the IEWBIND entry point on the
STARTD call and the DELETE macro at the completion of an ENDD call. In order
to retain addressability to the binder on subsequent calls, the entry point address is
saved as the first word in the dialog token. This token must not be modified in any
way between binder calls.

If your program does not use the IEWBIND macro, you must cause the binder to be
loaded for entry point IEWBIND. Subsequently, each function call is executed by
calling the IEWBIND entry point with a parameter list.

Invoking the Binder Using the Macros
Assembler language programs are expected to use the IEWBIND and IEWBUFF
macros. Sections “Coding the IEWBIND Macro” on page 149 and “IEWBIND Func-
tion Reference” on page 150 contain the details for coding the IEWBIND macro.
Section “Generating and Mapping Data Areas” on page 144 describes the coding
details of the IEWBUFF macro.

The IEWBIND macro generates standard linkage code to transfer control to the
binder, so register 13 must contain the address of an 18-word register save area.

Invoking the Binder Without the Macros
If you want to invoke the binder without using the macros (for example, from non-
assembler language programs), you need to provide the services and generate the
code equivalent to that provided by the macros.

Providing Buffer Areas
For programs that create or access module data through binder function calls
(GETD, GETE, GETN, PUTD) you must acquire the buffers and create the record
map for each record type you plan to access. See the following for a discussion of
the IEWBUFF and its associated macros for the specifications:

� “Generating and Mapping Data Areas” on page 144
� Appendix J, “Binder API Buffer Formats” on page 393
� “Using the IEWBUFF Macro” on page 144

 Chapter 8. Using the Binder Application Programming Interface 141

 Using the API

Providing the Environment
Your program must have the execution environment defined in “Setting the Invoca-
tion Environment” on page 140. If the addressing mode is not 31-bit, your program
must switch to 31-bit addressing mode before calling the binder. Upon return from
the binder, your program can restore the 24-bit addressing mode.

Obtaining the Address of the Binder Program
You load the binder using its IEWBIND entry point and save the entry point
address. If your compiler does not support a LOAD function, you need to call an
assembler subroutine to issue the LOAD macro and return the entry point address.
You can use the first word of the dialog token and/or the workmod token to save
the entry point address. When your program is complete, you cause the DELETE
macro to be issued to delete the binder from your execution environment.

Providing the Parameter Lists
Your program defines and sets each variable, then creates the parameter list for
each function call. The parameter list for each function call is provided in a figure
at the end of the function call description. See “IEWBIND Function Reference” on
page 150.

Don't forget to set the high-order bit in the last address of the list to a one. This bit
signifies to the binder the end of the list of addresses.

Your program is responsible for all of the variables. You need to ensure the integ-
rity of the dialog and workmod tokens between calls. Check that all varying char-
acter strings have a halfword prefix containing the correct length of the data (not
including the prefix).

Invoking the Binder
Your program calls the binder using MVS linkage conventions:

� Register 1 contains the address of the parameter list.
� Register 13 contains the address of an 18-word register save area.
� Register 14 contains the return address.
� Register 15 contains the IEWBIND entry point address.

Upon return from the binder, you can examine the return and reason codes.
Fullword return and reason codes are returned in registers 15 and 0, respectively.
They are also saved in the storage areas identified by the RETCODE and
RSNCODE keywords, if provided, on the IEWBIND macro.

Binder API Common Return and Reason Codes
A return code, indicating the completion status of the requested function, is
returned in register 15 and in the fullword designated by the keyword RETCODE, if
provided. Return codes are interpreted as follows:

0 Successful completion of the operation.

4 Successful completion, but an unusual condition existed. One or more warning
level messages have been issued, and the reason code has been set to indi-
cate the nature of the problem or situation.

8 Error condition detected. Invalid data may have been discarded. Corrective
action has been taken by the binder, but results may require inspection.

142 DFSMS/MVS V1R4 Program Management

 Using the API

12 Severe error encountered. Requested operation could not be completed, but
the dialog is allowed to continue.

16 Terminating error. Dialog could not be continued. Either a program error
occurred in the binder, or binder control blocks have been damaged. The
integrity of binder data cannot be assured.

A reason code is returned in register 0 and in the fullword designated by the
keyword RSNCODE, if provided.

The reason code identifies the nature of the problem. It is zero if the return code
was zero, a valid reason code otherwise. Reason codes are in the format
83eegggg. “ee” is 00 except for logic errors and abends when it is “EE” or “FF”
respectively. “gggg” contains an information code.

Reason codes are described with the individual function descriptions. A few reason
codes are common to many functions and described in Figure 31. All the binder
API reason codes, and the API function which calls them are shown in “Binder API
Reason Codes” on page 280.

See Appendix C, “Program Management Return Codes” on page 279 for a com-
plete list of return codes.

Figure 31 (Page 1 of 2). Common Binder API Reason Codes

Return
Code

Reason
Code (hex)

Explanation

00 00000000 Normal completion.

08 83000813 Data incompatible with buffer version. Request rejected.

12 83000001 Invalid workmod token. Request rejected.

12 83000002 Invalid dialog token. Request rejected.

12 83000003 Binder invoked from within user exit. Request rejected.

12 83000004 Invalid function code specified. Request rejected.

12 83000005 Invalid parameter. Request rejected.

12 83000006 A function not allowed during PUTD input mode operation
was requested. The request is rejected.

12 83000008 Wrong number of arguments specified. Request rejected.

12 83000009 Parameter list contains invalid address, or refers to storage
which is not accessible by the binder. Request rejected.

12 83000010 Parameter list is not addressable by the binder. Request
rejected.

12 83000101 Improper combination of parameters. Request rejected.

16 83000050 Storage limit established by workspace option exceeded.
Dialog terminated.

16 83000051 Insufficient storage available. Dialog terminated. Increase
REGION parameter on EXEC statement and rerun job.

16 83000060 Operating system not at correct DFSMS/MVS level. No
dialog established, function not processed.

16 83000FFF IEWBIND module could not be loaded. Issued only by
IEWBIND macro.

 Chapter 8. Using the Binder Application Programming Interface 143

 Using the API

Figure 31 (Page 2 of 2). Common Binder API Reason Codes

Return
Code

Reason
Code (hex)

Explanation

16 83EE2900 Binder logic error. Dialog terminated. Normally accompanied
by a 0F4 abend.

16 83FFaaa0 Binder abend occurred. Dialog terminated. aaa is the system
abend completion code. If the binder is invoked through one
of the batch entry points, no attempt is made to intercept x37
abends (indicating out-of-space conditions in SYSLMOD).

Generating and Mapping Data Areas
The binder uses a standardized buffer structure to pass data to and from calling
programs. Each buffer begins with a header containing the following information:

1. A doubleword containing an identifier

2. A fullword containing the length of the buffer (including the header)

3. A one-byte version identifier followed by three bytes of zeroes

4. A fullword containing the length of each entry in the buffer ('1' if the buffer
holds TEXT data)

5. A fullword containing the number of bytes (for TEXT data) or records (for other
data types) the buffer can hold.

This section describes how to use the IEWBUFF macro to generate and initialize
buffers and to obtain and release the necessary storage. The record layouts for
each buffer type are illustrated in Appendix J, “Binder API Buffer Formats” on
page 393.

Using the IEWBUFF Macro
The IEWBUFF macro generates, initializes, and maps the data buffers used during
binder processing. The IEWBUFF macro provides four functions:

� MAPBUF to generate a buffer declaration for one data type
� GETBUF to acquire storage for one buffer
� INITBUF to initialize a buffer header for one buffer
� FREEBUF to release storage for one buffer.

144 DFSMS/MVS V1R4 Program Management

 Using the API

 IEWBUFF FUNC=MAPBUF
 {,SIZE=size|BYTES=bytes}
 [,HEADREG={headreg|USERHEADREG}]
 [,ENTRYREG={entryreg|USERENTRYREG}]
 [,VERSION=version]
| [,PREFIX=prefix_chars]

 FUNC=GETBUF
 [,GM_RETCODE=gm_retcode]

 FUNC=INITBUF

 FUNC=FREEBUF
 [,FM_RETCODE=fm_retcode]

 ,TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|
| SYM|TEXT|NAME|XTLST|PINIT}

Figure 32. IEWBUFF Function Summary

MAPBUF provides a mapping macro for the buffer header and for one entry record.
If it is necessary to have more than one copy of a particular buffer in your program,
(for example, both version 1 and version 2 buffers) you must code the PREFIX
parameter to vary the generated data names. GETBUF and INITBUF are used to
prepare a buffer for use, and FREEBUF is used to release the buffer after usage.
GETBUF and FREEBUF are not needed if you specifically provide storage for the
buffer.

A single block of storage can be used for different buffer types if it is as large as
the largest buffer type used and the buffer header is initialized for the correct data
type before the buffer is used. When multiple buffers are to share the same
storage you should specify the buffer capacity in bytes rather than SIZE. Some
buffer types (such as ESD and RLD) vary considerably from release to release.

| You should specify VERSION=3 to be sure that all new binder features are avail-
| able. The default is VERSION=1.

This section describes the parameters for each function call. No separate return
codes, other than those generated by GETMAIN and FREEMAIN, are returned by
the IEWBUFF macro. The invocation environment is the same as that of the
IEWBIND macro (see “Setting the Invocation Environment” on page 140).

 Chapter 8. Using the Binder Application Programming Interface 145

 Using the API

FREEBUF: Free Buffer Storage
The syntax of the FREEBUF call is:

FUNC=FREEBUF
requests that the buffer storage be released and the base pointers for the
buffer mappings be set to zero.

| TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|TEXT|NAME|XTLST|MAP| PINIT}
| specifies a record buffer for B_ESD, B_RLD, B_IDRU, B_IDRL, B_IDRZ,
| B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer for
| B_TEXT data; a record buffer for name lists (B_NAME) - (see “Passing Lists to
| the Binder” on page 212); a data buffer for an extent list (B_XTLST) that is
| returned to the caller after a program module is loaded (see “LOADW: Load
| Workmod” on page 188); and a record buffer for part initializers (B_PINIT) -
| (see Chapter 2, “Creating Programs from Source Modules” on page 9, section
| Parts). ADATA and all compiler-defined text classes must use TEXT for buffer
| type.

FM_RETCODE=fm_retcode —RX-type address or register (2-12)
specifies the location of a fullword which is to receive the return code from the
FREEMAIN request issued by IEWBUFF.

| [symbol]| IEWBUFF| FUNC=FREEBUF
| ,TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|
| TEXT|NAME|XTLST|MAP|PINIT}
| [,FM_RETCODE=fm_retcode]

GETBUF: Get Buffer Storage
The syntax of the GETBUF call is:

FUNC=GETBUF
requests that storage for a buffer be obtained and that the sections for the
buffer header and the first buffer entry be mapped.

| TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|TEXT|NAME|XTLST|MAP| PINIT}
| specifies a record buffer for B_ESD, B_RLD, B_IDRU, B_IDRL, B_IDRZ,
| B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer for
| B_TEXT data; a record buffer for name lists (B_NAME) - (see “Passing Lists to
| the Binder” on page 212); a data buffer for an extent list (B_XTLST) that is
| returned to the caller after a program module is loaded (see “LOADW: Load
| Workmod” on page 188); and a record buffer for part initializers (B_PINIT) -
| (see Chapter 2, “Creating Programs from Source Modules” on page 9, section
| Parts). ADATA and all compiler-defined text classes must use TEXT for buffer
| type.

GM_RETCODE=gm_retcode —RX-type address or register (2-12)
specifies the location of a fullword which is to receive the return code from the
GETMAIN request issued by IEWBUFF.

| [symbol]| IEWBUFF| FUNC=GETBUF
| ,TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|
| TEXT|NAME|XTLST|MAP|PINIT}
| [,GM_RETCODE=gm_retcode]

146 DFSMS/MVS V1R4 Program Management

 Using the API

INITBUF: Initialize Buffer Header
The syntax of the INITBUF call is:

| TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|TEXT|NAME|XTLST|MAP| PINIT}
| FUNC=INITBUF
| requests that the buffer header be initialized.

| It specifies a record buffer for B_ESD, B_RLD, B_IDRU, B_IDRL, B_IDRZ,
| B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer for
| B_TEXT data; a record buffer for name lists (B_NAME) - (see “Passing Lists to
| the Binder” on page 212); a data buffer for an extent list (B_XTLST) that is
| returned to the caller after a program module is loaded (see “LOADW: Load
| Workmod” on page 188); and a record buffer for part initializers (B_PINIT) -
| (see Chapter 2, “Creating Programs from Source Modules” on page 9, section
| Parts). ADATA and all compiler-defined text classes must use TEXT for buffer
| type.

| [symbol]| IEWBUFF| FUNC=INITBUF
| ,TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|
| TEXT|NAME|XTLST|MAP|PINIT}

MAPBUF: Map Buffer Declaration
The syntax of the MAPBUF call is:

FUNC=MAPBUF
| TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|TEXT|NAME|XTLST|MAP| PINIT}
| requests a declaration of the buffer header and its entries. This function is
| required before other IEWBUFF functions can be requested, and can be
| requested only once per buffer type per workmod.

| TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|TEXT|NAME|XTLST|MAP}
| requests that the buffer header be initialized.
| specifies a record buffer for B_ESD, B_RLD, B_IDRU, B_IDRL, B_IDRZ,
| B_IDRB, B_SYM, and B_MAP class data items; a byte-oriented buffer for
| B_TEXT data; a record buffer for name lists (B_NAME) - (see “Passing Lists to
| the Binder” on page 212); a data buffer for an extent list (B_XTLST) that is
| returned to the caller after a program module is loaded (see “LOADW: Load
| Workmod” on page 188); and a record buffer for part initializers (B_PINIT) -
| (see Chapter 2, “Creating Programs from Source Modules” on page 9, section
| Parts). ADATA and all compiler-defined text classes must use TEXT for buffer
| type.

SIZE=nnn|BYTES=nnnn
SIZE=nnn specifies the size of the buffer in bytes for text data buffers and in
records for all other buffer types.

[symbol] IEWBUFF FUNC=MAPBUF
| ,TYPE={ESD|RLD|IDRU|IDRL|IDRZ|IDRB|SYM|TEXT|
| ,NAME|XTLST|MAP|PINIT}

,{SIZE=nnn|BYTES=nnnn}
[,HEADREG={ headreg|USERHEADREG}]
[,ENTRYREG={entryreg|USERENTRYREG}]

| [,VERSION=1|2|3]
[,PREFIX=string]

 Chapter 8. Using the Binder Application Programming Interface 147

 Using the API

BYTES=nnnn specifies the maximum number of bytes available for the buffer,
including the header, regardless of the TYPE specified. This parameter is an
alternative to the SIZE parameter and is used when a single block of storage is
shared by several different buffers.

Code the values for SIZE and BYTES as integer values in the range 0-2**31.

HEADREG={headreg|USERHEADREG}
specifies a value from 1-15 indicating the register number to equate to the base
register used for the buffer header dummy section (DSECT). If the default,
USERHEADREG, is used, IEWBUFF does not use a specific register to base
the buffer header DSECT. Instead, you define a symbol named
IEWBxyz_BASE, where xyz is the TYPE, as the base register for the DSECT.

ENTRYREG={entryreg|USERENTRYREG}
specifies a value from 1-15 indicating the register number to equate to the base
register used for the buffer entry DSECT. If the default, USERENTRYREG, is
used, IEWBUFF does not use a specific register to base the buffer entry
DSECT. Instead, you define a symbol named xyz_BASE, where xyz is the
TYPE, as the base register for the DSECT. The PREFIX value is needed for
differentiating the field names.

| VERSION=1|2|3
| specifies the format version to be used by IEWBUFF. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 buffers are used. In subsequent DFSMS/MVS
| versions, you can select either version 1 (the default), version 2, or version 3
| buffers. In DFSMS/MVS V1R4, it is recommended that you specify version 3
| buffers for new programs to take advantage of the binder's latest capabilities. If
| the application has specified or defaulted to a version 1 buffer, but is requesting
| access to a PM2 or PM3 format module, then the request will be processed;
| however, some data may be lost if not supported by the version 1 buffer. This
| is particularly important if you are working with ESD and RLD records, which
| vary considerably from release to release.

| Note:

| The version number of the buffer and the version number of the API call must
| be in agreement.

| PREFIX=string
| specifies that each generated symbol in the buffer declaration is prefixed with
| the provided string, followed by an underscore (“_”). The PREFIX value is
| needed for differentiating the field names of two versions of the same record
| type. For instance, if you use version 2 and version 3 of the ESD mapping in
| the same program, you can use "V2" and "V3," respectively, for each PREFIX.
| The mappings are generated with the differentiating prefixes (e.g.,
| V2_ESD_TYPE and V3_ESD_TYPE, etc.), and you can then refer to any field
| name in either mapping without ambiguity.

| Note: The PREFIX value should not be enclosed by apostrophes and must
| not exceed 32 bytes.

148 DFSMS/MVS V1R4 Program Management

 Using the API

Coding the IEWBIND Macro
Each IEWBIND call contains a function code keyword, an optional version number,
two optional keywords indicating where the return and reason codes are to be
placed after completion of the function, and either a dialog or a workmod token.
The function code identifies the requested service. Other parameters vary
according to the function requested.

The VERSION parameter on each call indicates the format of the parameter list.
For data calls (GETD, GETE, GETN and PUTD) the version specified or defaulted
on the API call must match the version of the buffer mapped by the IEWBUFF

| macro invocation. For new programs, specify VERSION=3 to be sure new binder
| features are available. If you do not specify VERSION, it defaults to VERSION=1.

IEWBIND supports inline parameter list generation (MF=S) and the list (MF=L) and
execute (MF=E) forms of assembler macros. The generated parameter list is docu-
mented for each IEWBIND function call.

Defining Varying Character Strings
Many character string variables are coded as varying-length character strings.
Varying-length strings are defined for user-defined names (section, class, ddname,
member, symbol, part), lists of codes which must appear as a single parameter,
and other parameter values which may vary in length. Varying-length character
strings have a halfword length in the first two bytes of the string that contains the
current length of the string not counting the length field itself. In the function call
specifications in “IEWBIND Function Reference” on page 150, the length value
associated with the string (for example, "1024-byte varying ...") indicates the
maximum length permitted.

Defining Section Names
Section names must be 1 to 1024 characters in length, consisting entirely of
EBCDIC characters in the range X'41' through X'FE', plus X'0E' and X'0F' (for
double byte character set (DBCS) support). Embedded blanks are not permitted in
names. A passed section or symbol name containing an embedded blank is trun-
cated at the first blank. Section names which contain embedded special characters
(other than alphanumerics and underscore) must be enclosed in single quotation
marks. An embedded quote is coded as two consecutive single quotation marks.

Defining Parameter Lists
A parameter list is generated for each IEWBIND function call. The first three
parameter addresses point to a fullword containing a halfword function code and
the halfword parameter list format, an optional fullword return code, and an optional
32-bit reason code. The remaining parameters vary in number and sequence
according to the requested function. Bit zero is set in the last parameter address to
indicate the end of the parameter list.

 Chapter 8. Using the Binder Application Programming Interface 149

 Using the API

Setting Null Values
The IEWBIND macro generates the necessary null and default values for any
omitted parameters. Parameters not coded on the macro are passed as null
values, rather than omitting the parameter altogether or setting the parameter
address to zero. Null values for the parameters are as follows:

Parameter Null value

Varying length character strings Zero-length string

Fixed length character strings Blanks

Fullword or halfword integers Zero, unless zero is a valid value for that
parameter (such as OFFSET); then use -1.

Data buffers (AREA, XTLST) Doubleword of zero

Lists (FILES, EXITS, OPTIONS) Fullword of zero

Addresses Zero

Tokens Fullword or doubleword of zero, depending
upon the token length. DIALOG,
WORKMOD, and EPTOKEN are 8 bytes;
use a doubleword.

WKSPACE (workspace) parameter Doubleword of zero

IEWBIND Function Reference
This section describes each function that you can specify on the IEWBIND macro
and the associated parameters.

 ADDA: Add Alias
ADDA allows you to specify an alias to be added to a list of alias names.

The syntax of the ADDA call is:

FUNC=ADDA
specifies that you are adding an alias.

| VERSION=1|2|3
specifies the version of the parameter list to be used. In DFSMS/MVS Version
1 Releases 1 and 2, version 1 parameter lists were used exclusively. In subse-

| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

[symbol] IEWBIND FUNC=ADDA
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,ANAME=aname
[,ENAME=ename]
[,AMODE=amode]

150 DFSMS/MVS V1R4 Program Management

 Using the API

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area that contains the workmod token
returned on the CREATEW request.

ANAME=aname —RX-type address or register (2-12)
specifies the location of an 1024-byte varying character string which contains
the alias or alternate entry point name to be added to the directory of the
output program library.

ENAME=ename —RX-type address or register (2-12)
specifies the location of an 1024-byte varying character string which contains
the name of the entry point that is to receive control when the program module
is accessed by the name specified in ENAME. If the name specified for
ENAME is not a defined label in the ESD, the program will be entered at its
primary entry point. If no value is provided for ENAME, the value defaults to
the value specified in ANAME.

AMODE=amode —RX-type address or register (2-12)
specifies the location of a varying character string which contains the
addressing mode for the entry point specified. This value overrides any other
AMODE value already specified for this entry point without affecting other entry
points. The values that can be specified for AMODE are 24, 31, ANY, and
MIN. See “AMODE: Addressing Mode Option” on page 108 for a detailed
description of addressing modes.

 Processing Notes
The ADDA function has no immediate effect on the output module. Instead, the
symbol is added to a list of symbols which is used to generate aliases when the
module is saved. If the specified symbol appeared on an earlier ADDA call or an
ALIAS control statement, a warning message is issued and the latter specification
replaces the original one. This list is used when the program module is saved in a
program library to update the directory of the target library.

If the name you specify matches a symbol already defined in the ESD of the
program module, it is processed as an alternate entry point instead of a true alias.

Alternate entry points are not supported for program objects that reside in
OpenEdition files. If an OpenEdition path name is specified, that name becomes a
true alias of the primary entry point.

Call sequence is significant for the ADDAlias function call. If multiple ADDA calls
specify the same alias or alternate entry point name, the most recent specification
prevails. If a subsequent INCLUDE function call specifying ALIASES=YES includes
an alias to the same name, the included specification takes precedence. To be
sure that the ADDA specification is used, it should follow all INCLUDE function calls
specifying ALIASES=YES. If the module contains multiple text classes, then the
primary and alternate entry points must be defined in the same class.

 Chapter 8. Using the Binder Application Programming Interface 151

 Using the API

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Symbol added to the list of aliases.

04 83000711 Alias name has already been assigned. This request will
replace the previous request for this alias name.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the ADDA
parameter list in general purpose register 1.

Figure 33. ADDA Parameter List

PARMLIST DS 0F
DC A(ADDA) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(ANAME) Alias Name
DC A(ENAME) Entry point name
DC A(AMODE+X'80000000') Entry point AMODE and end-of-

list indicator
ADDA DC H(30) ADDA function code value

| DC| H(03)| Parameter list version number

 ALIGNT: Align Text
ALIGNT allows you to specify 4KB page alignment for a control section or named
common area during the current binding operation. The alignment specification is
not changed in the ESD record of the control section.

The syntax of the ALIGNT call is:

FUNC=ALIGNT
specifies that the control section is to be aligned at a page boundary.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

[symbol] IEWBIND FUNC=ALIGNT
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,SECTION=section

152 DFSMS/MVS V1R4 Program Management

 Using the API

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area that contains the workmod token
returned on the CREATEW request.

SECTION=section —RX-type address or register (2-12)
specifies the location of a varying character string which contains the name of
the control section or common section to be page aligned.

 Processing Notes
An ALIGNT request is valid only when the processing intent is BIND.

| If the section does not appear, a message will be issued.

| The “page_aligned” attribute is set for the target workmod and, when the module is
| saved, in the output directory.

Page alignment requests remain in effect only for the current bind. The alignment
specification in the ESD record is not changed.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Section will be aligned during bind opera-
tion.

12 83000104 Function not allowed for INTENT=ACCESS. Request rejected.

04 83000710 Duplicate alignment request. A request to page align this
section has already been processed. This request is ignored.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
ALIGNT parameter list in general purpose register 1.

Figure 34. ALIGNT Parameter List

PARMLIST DS 0F
DC A(ALIGNT) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SECTION+X'80000000') Section name and end-of-list

indicator
ALIGNT DC H(31) ALIGNT function code

| DC| H(03)| Parameter list version

 Chapter 8. Using the Binder Application Programming Interface 153

 Using the API

 ALTERW: Alter Workmod
ALTERW allows you to change or delete symbols, control sections, or common
areas and lengthen sections in a program module. The value specified on the
MODE parameter determines whether the request is performed on all items cur-
rently in the workmod, or delayed to be performed only on the next program
module included in the workmod.

The ALTERW request with MODE=NEXT should be followed by an include request
for an object module or program module. If it is not, any pending alterations for the
next included data set are ignored.

The syntax of the ALTERW call is:

FUNC=ALTERW
specifies that you are changing or deleting a symbol or control section or
lengthening a section within the workmod.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| Note: If VERSION=1 is specified for the ALTERW call, then CLASS cannot be
| specified as a macro keyword. The parameter list ends with the COUNT
| parameter (with the high-order bit set). This exception is for version 1 only.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area that contains the workmod token
returned on the CREATEW request.

ATYPE={CHANGE|DELETE|EXPAND|REPLACE}
specifies the type of alteration which is to be made on the designated
workmod. The value for ATYPE may be abbreviated as: C, D, E, or R.

[symbol] IEWBIND FUNC=ALTERW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,ATYPE={CHANGE|DELETE|EXPAND|REPLACE}
[,MODE={IMMED|NEXT }]
,OLDNAME=oldname
[,NEWNAME=newname]
[,COUNT=count]
[,CLASS= class]

154 DFSMS/MVS V1R4 Program Management

 Using the API

The alteration is performed either on the next module included in the workmod
or on all modules currently in the workmod, depending on the argument speci-
fied on the MODE parameter. The possible arguments are as follows:

CHANGE
changes an external symbol of any ESD type from OLDNAME to
NEWNAME. The symbol is changed in the target module(s). Occurrences
of the symbol in other modules, other workmods, or in directory entries are
not affected.

If NEWNAME is already a defined symbol in the workmod, the existing
NEWNAME is deleted when this function begins processing. A warning
message is issued. Note that the results of the CHANGE operation can
differ from those of the linkage editor in this situation,

DELETE
deletes an external symbol in the target module(s). If you specify an entry
name, the symbol definition is removed from the ESD and symbol refer-
ences are unaffected. If you specify a control section or common section
name, any items in the workmod with that section name are deleted. any
external references in the workmod to the deleted symbol are unresolved.

EXPAND
expands the length of the text of a section. The same rules that apply to
usage of the EXPAND control statement are in effect; see “EXPAND
Statement” on page 76.

REPLACE
allows you to delete a symbol (OLDNAME) and change any references to
that symbol to a new name (NEWNAME). If you specify a symbol that
refers to a section, all items having that name are deleted from the
workmod. If you specify a symbol, this operation is the same as the
CHANGE alteration. Any external references to the deleted section within
the workmod are changed to the new name.

MODE={IMMED|NEXT}
specifies when the operation is to take place. The values are as follows:

IMMED
the operation is to take place on all modules currently in the workmod.

NEXT
the operation is to take place on the next module included in the workmod.
This value is the default.

The value for MODE may be abbreviated as I or N.

OLDNAME=oldname —RX-type address or register (2-12)
specifies the location of a varying character string which contains the section
name or symbol to be changed, deleted, or replaced, or the name of the
section to be expanded. If OLDNAME is left blank, it is assumed to be a refer-

| ence to a blank common section. The maximum length of OLDNAME is 1024
| bytes.

NEWNAME=newname —RX-type address or register (2-12)
specifies the location of a varying character string which contains the new
symbol name for a change or replace operation. NEWNAME must not contain

| all blanks. The maximum length of NEWNAME is 1024 bytes.

 Chapter 8. Using the Binder Application Programming Interface 155

 Using the API

COUNT=count —RX-type address or register (2-12)
specifies the location of a fullword which contains the number of bytes by which
to lengthen a section for an expand operation.

CLASS=class —RX-type address or register (2-12)
specifies the name of a 16-byte varying character string variable containing the
class name of the item to be EXPANDed. If you specified anything other than
EXPAND for the ATYPE parameter, this parameter is ignored. If CLASS is not
specified, the default is B_TEXT.

 Processing Notes
An ALTERW request is valid only when the processing intent is BIND.

NEWNAME is required for change and replace alterations. It is ignored on delete
and expand alterations.

The scope of the requested operation is the designated workmod or the next
module to be included into the workmod by the binder, regardless of its source. An
included module refers to the next object or program module to enter the desig-
nated workmod; the first END record (object module) or end-of-module indication
(program module) delimits the scope of ALTERW. Alter Workmod does not affect
any module(s) residing in other workmods or which enter the workmod following the
target module.

If an ALTERW request is not followed by an INCLUDE, such that a BINDW,
LOADW or SAVEW request is received and alterations are pending, the alterations
are not applied to the first autocalled module but are ignored. Similarly, if one or
more alterations are pending as a result of a CHANGE or REPLACE control state-
ment encountered in an autocalled member and an end-of-file is encountered, then
those alterations are not applied to the next autocalled member.

ALTERW has no effect on symbols or section names appearing in previous or sub-
sequent deferred function requests, such as ADDA, ALIGNT, INSERTS, ORDERS,
or SETL.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Module altered or deferred request
accepted.

04 83000702 OLDNAME not found. For an immediate-mode change or
replace request, no ESD entries in the module contained the
specified name.

04 83000706 Duplicate name. For an immediate mode request, the
replacement name already exists as an external symbol in the
target workmod. The old name or section will be deleted if
necessary, and the requested change will be made.

08 83000550 A section for which an expand request was made is not in the
target workmod. Workmod is unchanged.

156 DFSMS/MVS V1R4 Program Management

 Using the API

Return
Code

Reason
Code

Explanation

08 83000551 The name on an expand request matched a symbol in
workmod which was not a section name. Workmod is
unchanged.

08 83000552 The name on a change or replace request is blank. Workmod
is unchanged.

08 83000553 Expand request for more than 1 gigabytes was made.
Workmod is unchanged.

08 83000554 The class name specified or defaulted does not exist in the
section you specified. The element cannot be expanded.
Workmod is unchanged.

08 83000555 Designated class is not a text class. The element cannot be
expanded. Workmod is unchanged.

12 83000104 INTENT=ACCESS specified for workmod. Module could not
be altered.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
ALTERW parameter list in general purpose register 1.

Figure 35. ALTERW Parameter List

PARMLIST DS 0F
DC A(ALTERW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(ATYPE) Alter type
DC A(MODE) Alter mode
 A(OLDNAME) Old name
 A(NEWNAME) New name
DC A(COUNT) Number of bytes
DC A(CLASS+X'80000000') Class and end-of-list.

ALTERW DC H(50) ALTERW function code
| DC| H(03)| Parameter list version

ATYPE DC C'C' Alter type:
“C” = Change
“D” = Delete
“E” = Expand
“R” = Replace

MODE DC C'N' Alter mode:
“I” = Immediate
“N” = Next

| AUTOCALL: Perform Incremental Autocall
| Perform immediate (incremental) autocall, using the given library name as the
| CALLIB. Incremental autocall attempts to resolve any unresolved symbols at the
| time the call is made, using a single library or library concatenation. Incremental
| autocall does not cause immediate binding.

 Chapter 8. Using the Binder Application Programming Interface 157

 Using the API

| The syntax of the AUTOCall call is:

| FUNC=AUTOCall
| requests the AUTOCall function. You can abbreviate the function name as
| AUTOC.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| RETCODE=retcode —RX-type address or register (2-12)
| specifies the location of a fullword integer which is to receive the return code
| returned by the binder.

| RSNCODE=rsncode —RX-type address or register (2-12)
| specifies the location of a 4-byte hexadecimal string which is to receive the
| reason code returned by the binder.

| WORKMOD=workmod —RX-type address or register (2-12)
| specifies the location of an 8-byte area which contains the workmod token
| returned by the binder on the CREATEW request. You must not modify this
| token.

| CALLIB= callib —RX-type address or register (2-12)
| Specifies the name of an 8-byte varying character string containing the ddname
| of the library or library concatenation to be searched during autocall processing.

| PATHNAME=pathname —RX-type address or register (2-12)
| Specifies the name of a 1024-byte varying character string which contains the
| path name of the OpenEdition file to be searched during autocall processing.
| The path name must begin with “/” (absolute path) or “./” (relative path), fol-
| lowed by the path name up to a maximum of 1024 significant characters.

| [symbol]| IEWBIND| FUNC=AUTOCall
| [,VERSION=version]
| [,RETCODE=retcode]
| [,RSNCODE=rsncode]
| ,WORKMOD=workmod
| {,CALLIB= callib|,PATHNAME= pathname}

| Processing Notes
| If pathname represents an OpenEdition file, the binder will assume that the file is
| an OpenEdition archive file. If it is an OpenEdition directory file, then the file
| names in the directory will be used for symbol resolution during autocall.

| Incremental autocall does not perform all of the normal autocall functions. Mes-
| sages relating to unresolved references are not issued. RENAME control state-
| ments are not processed, and C library renames and the renames associated with
| the UPCASE option are not performed. The interface validation is not called.

| Incremental autocall is not performed if the NCAL processing option is in effect

158 DFSMS/MVS V1R4 Program Management

 Using the API

| Return and Reason Codes
| The binder API reason codes are shown in Figure 31 on page 143.

| Return
| Code
| Reason
| Code
|
| Explanation

| 00| 00000000| Normal completion. Autocall processing was successful and
| the symbol(s) was resolved.

| Parameter List
| If your program does not use the IEWBIND macro, place the address of the
| AUTOCall parameter list in general purpose register 1.

| Figure 36. AUTOCall Parameter List

| PARMLIST| DS| 0F
| DC| A(AUTOC)| Function code
| DC| A(RETCODE)| Return code
| DC| A(RSNCODE)| Reason code
| DC| A(WORKMOD)| Workmod token
| DC| A(CALLIB+X'80000000')| Autocall library DDname or path
| name
| AUTOC| DC| H(51)| AUTOCall function code
| DC| H(03)| Parameter list version number

 BINDW: Bind Workmod
BINDW requests binding of the current workmod. Binding performs the following
services:

� Resolving references between control sections
� Resolving unresolved external references from designated libraries
� Ordering sections as specified on any ORDERS and INSERTS calls
� Completing requests for page alignment
� Calculating any relocatable address constants
� Updating the RLD and ESD.

The syntax of BINDW is:

FUNC=BINDW
requests a bind of the workmod into a program module.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

[symbol] IEWBIND FUNC=BINDW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
[,CALLIB= ddname]

 Chapter 8. Using the Binder Application Programming Interface 159

 Using the API

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area that contains the workmod token
returned on the CREATEW request.

CALLIB= ddname —RX-type address or register (2-12)
specifies the location of an 8-byte varying character string which contains the
ddname of the library or library concatenation to be used for automatic library
call.

 Processing Notes
A BINDW request is valid only when the processing intent is BIND.

The processing rules for resolving external references are:

1. If the symbol was specified on a previous SETL call, one of the following
occurs:

� If the SETL specified a library ddname, that library should be searched. If
the member could not be located, no attempt is made to resolve the symbol
from the autocall libraries.

� If the SETL specified either the “no call” or “exclude” option, the symbol
remains unresolved and the ESD entry is marked accordingly.

2. If the symbol was not specified on a previous SETL call, then if the RES option
is in effect, attempt to resolve the symbol from the link pack area.

Note: If any symbols are resolved from the link pack area, the module cannot
be saved on external storage.

3. If the above two conditions are not true, attempt to resolve the symbol from the
appropriate autocall library:

� If the CALLIB parameter was specified on the BINDW call, attempt to
resolve the symbol from that library.

� If a library was specified as a CALLIB option from STARTD or SETO,
attempt to resolve the symbol from that library.

� Otherwise, the reference is not resolved.

4. Once the module has been bound, no further modifications can be applied. To
make additional changes it is necessary to save the existing module, reset the
workmod, and include the saved module.

Sections are ordered in order of inclusion unless this order is overridden by
INSERTS or ORDERS calls.

160 DFSMS/MVS V1R4 Program Management

 Using the API

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Workmod has been bound.

04 83000300 Unresolved external references exist. NCAL, NOCALL or
NEVERCALL specified. Workmod has been bound.

04 83000308 Unresolved external references exist. A member matching the
unresolved reference was included during autocall, but did not
contain an entry label of the same name. Workmod has been
bound.

04 83000316 The overlay option was specified, but there is only one
segment. The workmod is bound, but not in overlay format.

04 83000314 At least one valid exclusive call was found in a module bound
in overlay format. The XCAL option was specified. Workmod
has been bound.

08 83000301 Unresolved external references exist. The referenced symbols
could not be resolved from the autocall library. Workmod has
been bound.

08 83000302 Unresolved external references exist. No autocall library spec-
ified. Workmod has been bound.

08 83000303 Unresolved external references exist. The member(s) were
located in the autocall library, but an error occurred while
attempting to include one or more of the members. Refer-
ences to the member(s) which could not be included remain
unresolved. Workmod has been bound.

08 83000304 The name in an insert request was not resolved, or was not
resolved to a section name.

08 83000305 An ORDER request was processed for a symbol which is not
a label in the ESD. Ordering of that symbol has been ignored.
The workmod has been bound.

08 83000307 The module was bound successfully, but the module map
and/or cross reference table could not be produced.

08 83000309 An ALIGN request was processed for a symbol which is not a
label in the ESD. Alignment of that symbol has been ignored.
The workmod has been bound.

08 83000310 One or more alteration requests were pending upon entry to
autocall. The alterations were ignored. Workmod has been
bound.

08 83000311 Workmod has more than one segment, but OVLY was not
specified. The overlay structure was ignored, but the
workmod has been bound.

08 83000313 A V-type address constant of less than four bytes, and which
references a segment other than the resident segment, has
been found in an overlay structure. Workmod has been
bound.

08 83000315 At least one invalid exclusive call was found in a module
bound in overlay format. Workmod has been bound, but the
adcon for the invalid call will not be properly relocated.

 Chapter 8. Using the Binder Application Programming Interface 161

 Using the API

Return
Code

Reason
Code

Explanation

08 83000317 At least one valid exclusive call was found in a module bound
in overlay format. Workmod has been bound.

08 83000318 There are no calls or branches from the root segment of an
overlay module to a segment lower in the tree structure.
Other segments cannot be loaded. Workmod has been
bound.

08 83000321| Overlay specified with COMPAT=PM2 or COMPAT=PM3.
Overlay is ignored.

08 83000501 One or more control statements were included during autocall
processing. The statements have been ignored.

12 83000104 INTENT=ACCESS specified for workmod. Module could not
be rebound.

12 83000312 There are no sections or only zero-length sections in the root
segment of an overlay module, and the module probably
cannot be executed. Workmod has been bound.

12 83000320 An autocall library is unusable. Either it could not be opened
or the directory could not be processed. Autocall processing
continues without using this library.

12 83000322 Conflicting attributes encountered within a class. The module
cannot be bound.

12 83000415 Module contains no ESD data, and could not be bound.

12 83000719 Module contained no text after being bound, and is probably
not executable. Processing continues.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the BINDW
parameter list in general purpose register 1.

Figure 37. BINDW Parameter List

PARMLIST DS 0F
DC A(BINDW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(DDNAME+X'80000000') Library ddname and end-of-list

indicator
BINDW DC H(70) BINDW function code

| DC| H(03)| Parameter list version

162 DFSMS/MVS V1R4 Program Management

 Using the API

 CREATEW: Create Workmod
CREATEW initializes a workmod and initializes the module options to the defaults
for the dialog. CREATEW also specifies the processing intent which determines
the functions that can be performed on the workmod.

The syntax of the CREATEW call is:

FUNC=CREATEW
specifies that a workmod is to be created and initialized.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which is to receive the workmod token
for this request.

DIALOG=dialog —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains a dialog token for which
the workmod is requested. The dialog token is obtained using the STARTD
call and must not be modified.

INTENT={BIND|ACCESS}
specifies the range of binder services which may be requested for this
workmod. The values are as follows:

BIND
specifies that the processing intent for this workmod is bind. The workmod
will be bound and all binder functions may be requested.

ACCESS
Specifies that the processing intent for this workmod is access. The
workmod will not be bound, and no services that alter the size or structure
of the program module can be requested. See “Processing Intents” on
page 136 for a list of services that are not allowable.

The value for INTENT may be abbreviated as B or A.

[symbol] IEWBIND FUNC=CREATEW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,DIALOG=dialog
,INTENT={BIND|ACCESS}

 Chapter 8. Using the Binder Application Programming Interface 163

 Using the API

 Processing Notes
None.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Workmod and workmod token created.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
CREATEW parameter list in general purpose register 1.

Figure 38. CREATEW Parameter List

PARMLIST DS 0F
DC A(CREATEW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(WORKMOD) Workmod token
DC A(INTENT+X'80000000') Processing intent and end-of-

list indicator
CREATEW DC H(10) CREATEW function code

| DC| H(03)| Parameter list version number
INTENT DC CL1'A' Processing intent

"A" = Access
"B" = Bind

 DELETEW: Delete Workmod
DELETEW deletes a workmod. You must issue either the SAVEW or LOADW
function call before the DELETEW unless PROTECT=NO has been specified.
DELETEW resets the workmod token to the null state.

The syntax of the DELETEW call is:

FUNC=DELETEW
specifies that a workmod is to be deleted.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

[symbol] IEWBIND FUNC=DELETEW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
[,PROTECT={YES|NO}]

164 DFSMS/MVS V1R4 Program Management

 Using the API

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

PROTECT={YES|NO}
specifying PROTECT=N allows the binder to delete a workmod that has been
altered but not yet saved or loaded.

The value for PROTECT may be abbreviated as Y or N.

 Processing Notes
The binder is sensitive to the state of the DCB pointed to by the DCBPTR in an
INCLUDE call. The DCB must not be closed and re-opened while the binder
accesses the corresponding data set during a dialog. Once it is opened initially for
an INCLUDE call, it must remain open until after the binder's ENDD call takes
place.

Note that if you do alter your DCB as described above, using DELETEW is not
enough to re-access your data set at a later time during the same binder dialog.
This only causes the data set's information to remain with the dialog, and such
information is no longer valid once the DCB is closed. An attempt to reuse the
altered DCB in the same binder dialog may produce unpredictable results. To
avoid this, you need to end your dialog (ENDD) and start a new one (STARTD).

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Workmod has been deleted.

12 83000707 The workmod was in an altered state, and PROTECT=YES
was specified or defaulted. The delete request is rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
DELETEW parameter list in general purpose register 1.

 Chapter 8. Using the Binder Application Programming Interface 165

 Using the API

Figure 39. DELETEW Parameter List

PARMLIST DS 0F
DC A(DELETEW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(PROTECT+X'80000000') Protect flag and end-of-list indi-

cator
DELETEW DC H(15) DELETEW function code

| DC| H(03)| Parameter list version number
PROTECT DC C'Y' Protection flag

"Y" = Yes
"N" = No

| DLLRENAME: Rename DLL modules
| DLLRename allows you to rename a list of DLL names. When a module has been
| bound with processing option DYNAM(DLL) in effect, a table containing information
| about imported and exported symbols is created. The information about imported
| symbols includes the name of the DLL from which those symbols are to be
| imported. The DLLRename API takes a list of existing and replacement DLL
| names and makes any necessary substitutions in said table.

| The syntax of the DLLRename call is:

| FUNC=DLLRename
| Requests the DLLRename function. May be abbreviated to DLLR.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| RETCODE=retcode —RX-type address or register (2-12)
| specifies the location of a fullword integer which is to receive the return code
| returned by the binder.

| RSNCODE=rsncode —RX-type address or register (2-12)
| specifies the location of a 4-byte hexadecimal string which is to receive the
| reason code returned by the binder.

| WORKMOD=workmod —RX-type address or register (2-12)
| specifies the location of an 8-byte area that contains the workmod token
| returned on the CREATEW request. You must not modify this token.

| RENAMEL= renamel —RX-type address or register (2-12)
| specifies the name of a list of fullword addresses. The list consists of a count
| field, followed by one or more field trios, consisting of an old DLL name, fol-

| [symbol]| IEWBIND| FUNC=DLLRename
| [,VERSION=version]
| [,RETCODE=retcode]
| [,RSNCODE=rsncode]
| ,WORKMOD=workmod
| ,RENAMEL= renamel

166 DFSMS/MVS V1R4 Program Management

 Using the API

| lowed by a new DLL name, followed by a code which indicates whether or not
| the binder successfully renamed the old name to the new name. (Figure 40 on
| page 167 shows the list format).

| The 4-byte address of each name in the list points to a varying-length character
| string which can be up to 255 bytes in length. The first two bytes in such string
| indicate the length of the string, excluding the first two bytes. The 255 char-
| acter length is provided for the support of OpenEdition files, primary DLL
| names in PDSE libraries.

| The 4-byte address of each rename code points to a full word field.

| Off Len

| ð 4 A(COUNT) Number of trios

| 4 4 A(OLDNAME_1)

| 8 4 A(NEWNAME_1)

| 12 4 A(RENAME_CODE_1)

| 16 4 A(OLDNAME_2)

| 2ð 4 A(NEWNAME_2)

| 24 4 A(RENAME_CODE_2)

| ...

| Figure 40. Rename list

| Processing Notes
| The binder scans the DLL member names in the Import/Export table of the current
| workmod. If one of the DLL members in the binder table matches an OLDNAME_x
| entry in the passed rename list, the DLL name in the table is replaced with the
| corresponding new name from the list. When this happens, the RENAME_CODE_x
| is set to zero, meaning that the renaming function was successful for the corre-
| sponding name pair in the list. Otherwise, the rename code is set to 4 (warning),
| meaning that the renaming did not take place for said name pair.

| This API provides the functional equivalent of the IBM C/C++ DLLRENAME utility in
| support of DLL processing by the binder.

| In an application, you may want to verify whether an Import/Export table exists
| before attempting the DLLRename call. You may do so by coding a binder
| GETData call, with CLASS=B_IMPEXP and a TEXT buffer (Refer to GETData and
| IEWBUFF in this chapter). GETData will indicate whether the class (the Import/
| Export table) exists or is empty. Since DLL support was not added until
| DFSMS/MVS V1R4, program objects produced in earlier releases will not contain
| Import/Export tables.

| When you bind a module in batch mode and specify the MAP processing option, a
| class entry of B_IMPEXP in the output listing reveals the existence of an
| Import/Export table.

| Note: DLLRename only affects the member names stored in the Import/Export
| table and does not affect the external symbols in the ESD or the directory entries
| for the module. DLLRename does not cause the module to be rebound.

 Chapter 8. Using the Binder Application Programming Interface 167

 Using the API

| Return and Reason Codes
| The binder API reason codes are shown in Figure 31 on page 143.

| Return
| Code
| Reason
| Code
|
| Explanation

| 00| 00000000| Normal completion. The call completed successfully.
| However, you still need to verify your RENAMEList to ensure
| that the DLL names were indeed changed. Refer to the
| DLLRename processing notes and the format of the
| DLLRename parameter list to undestand what you need to
| verify.

| 04| The module that you are processing does not contain an
| Import/Export table; therefore, there are no DLL names to
| rename. Refer to the DLLRename processing notes for more
| details.

| Parameter List
| If your program does not use the IEWBIND macro, place the address of the
| DLLRename parameter list in general purpose register 1.

| Figure 41. DLLRename Parameter List

| PARMLIST| DS| 0F
| DC| A(DLLR)| Function code
| DC| A(RETCODE)| Return code
| DC| A(RSNCODE)| Reason code
| DC| A(WORKMOD)| Workmod token
| DC| A(RENAMEL+X'80000000')| Rename list & end-of-list indi-
| cator
| DLLR| DC| H(17)| DLLR function code value
| DC| H(03)| Parameter list version number

 ENDD: End Dialog
ENDD ends the specified dialog and releases all associated storage resources.
Attached workmods are deleted, data sets are closed, storage obtained on behalf
of the caller is released, and the dialog token is invalidated.

The syntax of the ENDD call is:

FUNC=ENDD
specifies that a dialog is to be ended.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In

[symbol] IEWBIND FUNC=ENDD
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,DIALOG=dialog
[,PROTECT={YES|NO}]

168 DFSMS/MVS V1R4 Program Management

 Using the API

| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

DIALOG=dialog —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the token for the dialog
to be terminated.

PROTECT={YES|NO}
specifying PROTECT=NO allows the binder to end the dialog even if any
remaining workmods have been altered but not yet saved or loaded.

The value for PROTECT may be abbreviated as Y or N. YES is the default.

 Processing Notes
None.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Dialog ended normally.

| 04| 83000700| One or more workmods were in an active state but they were
| not protected (PROTECT=NO in ENDDialog). Dialog ended
| normally.

08 83000704 An unexpected condition occurred while ending the dialog.
The dialog is terminated, but some resources may not have
been released.

12 83000708 One or more workmods were in an "active" state, and
PROTECT=YES was specified or defaulted. The dialog is not
terminated.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the ENDD
parameter list in general purpose register 1.

 Chapter 8. Using the Binder Application Programming Interface 169

 Using the API

Figure 42. ENDD Parameter List

PARMLIST DS 0F
DC A(ENDD) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(PROTECT+X'80000000') Protection flag and end-of-list

indicator
ENDD DC H(5) ENDD function code

| DC| H(03)| Parameter list version number
PROTECT DC CL1'Y' Protection flag

"Y" = Yes
"N" = No

 GETD: Get Data
GETD returns data from items in a workmod. The values of the CLASS and
SECTION parameters determine which item is returned. If SECTION is omitted, all
sections are returned as a single unit. This service can only be performed on a
bound workmod.

The syntax of the GETD call is:

FUNC=GETD
requests that data from items in a workmod be returned to a specified location.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

Note: This version must match the version you specify with the IEWBUFF
macro when you define the buffer passed on this call.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

[symbol] IEWBIND FUNC=GETD
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,CLASS=class
[,SECTION=section]
,AREA=buffer
,CURSOR=cursor
,COUNT=count

170 DFSMS/MVS V1R4 Program Management

 Using the API

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

CLASS=class —RX-type address or register (2-12)
| specifies the location of a 16-byte varying character string containing a class
| name. The class name may have been defined by the binder, a compiler, or
| an end user. (See “Understanding Binder Programming Concepts” on

page 127 for binder class names.)

SECTION=section —RX-type address or register (2-12)
specifies the location of a varying character string which contains the name of
the section to be processed. If omitted, this defaults to a concatenation of all
sections in the specified class. If the processing intent is bind, the sections are
ordered by virtual address. If the processing intent is access, they are returned
in the same order that they were included in the workmod.

AREA=buffer —RX-type address or register (2-12)
specifies the location of a buffer to receive the data. The binder returns data
until either this buffer is filled or the specified items have been completely
moved. See “Generating and Mapping Data Areas” on page 144 for informa-
tion on buffer handling.

CURSOR=cursor —RX-type address or register (2-12)
specifies the location of a fullword integer which contains the position within the
item(s) at which the binder should begin processing. Specifying a zero for the
argument causes the binder to begin processing at the start of the item. The
cursor value is specified in bytes for items in the TEXT class, in records for all
other classes. The value is relative to the start of the item. The cursor value is
modified before returning to the caller.

COUNT=count —RX-type address or register (2-12)
specifies the location of a fullword which is to receive the number of bytes of
TEXT or the number of entries returned by the binder.

 Processing Notes
The CURSOR parameter acts as a place holder when the selected data does not fit
in the buffer provided. On the next GETD request, the binder begins processing
where the last request left off.

If you interrupt a series of successive GETD calls, you should reset the value of the
cursor before continuing. Otherwise, the cursor value may be invalid and the
results of a GETD request are unpredictable.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

04 83000800 Normal completion. Some data may have been returned in
the buffer, and an end-of-data condition was encountered.
There is no message associated with this condition.

 Chapter 8. Using the Binder Application Programming Interface 171

 Using the API

Return
Code

Reason
Code

Explanation

08 83000750 The buffer is not large enough for one record. No data is
returned.

08 83000801 The requested item did not exist or is empty. No data has
been returned.

08 83000813 The buffer version is not compatible with the module content.
No data is returned.

12 83000102 Workmod was in an unbound state. GETD request could not
be processed.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the GETD
parameter list in general purpose register 1.

Figure 43. GETD Parameter List

PARMLIST DS 0F
DC A(GETD) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(CLASS) Class name
DC A(SECTION) Section name
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A(COUNT+X'80000000') Data count and end-of-list indi-

cator
GETD DC H(61) GETD function code

| DC| H(03)| Parameter list version number

GETE: Get ESD Data
GETE returns data from ESD items. GETE must be used on a bound workmod.
Four optional parameters allow you to specify selection criteria for the ESD items to
be returned: section name, ESD record type, offset in the section or module, and
symbol name. Only ESD records that meet all of the selection criteria will be
returned. Multiple selection criteria can be specified to retrieve exactly the records
you need.

172 DFSMS/MVS V1R4 Program Management

 Using the API

The syntax of the GETE call is:

FUNC=GETE
requests that data from ESD items in a workmod be returned to a specified
location.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| Note: If VERSION=1 is specified for the GETE call, then CLASS cannot be
| specified as a macro keyword. The parameter list ends with the COUNT
| parameter (with the high-order bit set). This exception is for version 1 only.

Note: This version must match the version you specify with the IEWBUFF
macro when you define the buffer passed on this call.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

SECTION=section —RX-type address or register (2-12)
specifies the location of a 16-byte varying character string which contains the
name of the section to be processed. This argument can be set to blanks to
indicate blank common area. Sections will be retrieved in the same order that
they were included in the workmod.

The default value is all sections. If this parameter is specified, only the indi-
cated section is searched.

RECTYPE=rectype —RX-type address or register (2-12)
specifies the location of a varying character string which contains a list of the
ESD record types to be returned. If you do not specify this argument, all
record types are returned.

[symbol] IEWBIND FUNC=GETE
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
[,SECTION=section]
[,RECTYPE=rectype]
[,CLASS= class]
[,{OFFSET=offset|SYMBOL= symbol}]
,AREA=buffer
,CURSOR=cursor
,COUNT=count

 Chapter 8. Using the Binder Application Programming Interface 173

 Using the API

Record types must be identified by one- or two-character codes, separated by
commas and enclosed in parentheses. Embedded blanks are not allowed.
Valid record types are:

SD Section definition
ED Element definition
LD Label definition
PD Part definition
PR Part reference
ER External reference

| CM Common
| ST Segment table
| ET Entry table
| DS Dummy section definition
| CM Common section definition
| ET ENTAB
| ST SEGTAB
| PC Private code section definition
| WX Weak external reference

In addition, you can use a generic code to reference more than one ESD type:

| S Section definition records (SD, CM, ST, ET, PC, and DS)
U Unresolved external references (ER, ESD_STATUS=unresolved)

CLASS=class —RX-type address or register (2-12)
specifies the location of a 16-byte varying character string containing the name
of the text class referenced by the ESD record to be selected. If class has not
been specified, ESD records are returned without regard to class.

OFFSET=offset —RX-type address or register (2-12)
specifies the location of a fullword integer which contains the offset within the
specified section. If a section name has not been specified, a module offset is
assumed. If you specify OFFSET you cannot specify SYMBOL but must
specify CLASS.

SYMBOL=xsymbol —RX-type address or register (2-12)
specifies the location of a varying character string which contains a symbol to
be used as a selection criterion. If you specify SYMBOL you cannot specify
OFFSET.

If neither OFFSET nor SYMBOL is provided, processing begins at the start of
the item.

AREA=buffer —RX-type address or register (2-12)
specifies the location of a buffer to receive the data. This buffer must be allo-
cated and initialized in ESD format. See “Generating and Mapping Data Areas”
on page 144 for information on buffer handling.

CURSOR=cursor —RX-type address or register (2-12)
specifies the location of a fullword integer which indicates the position within
the section or module at which the binder should begin processing. Specifying
a zero for this argument causes the binder to begin processing at the first ESD
entry. Offsets are specified in records and are relative to the start of the
selected ESD item(s).

174 DFSMS/MVS V1R4 Program Management

 Using the API

COUNT=count —RX-type address or register (2-12)
specifies the location of a fullword integer in which the binder will store the
number of entries it has returned.

 Processing Notes
The binder returns ESD records that meet the selection criteria specified on the
call:

� If SECTION is specified, only that section of the ESD will be searched. All
sections is the default.

� If RECTYPE is specified, only ESD records of the types appearing in the sup-
plied list are returned.

� If OFFSET is specified and rectype=“S,” the ESD record for the control section
(or common area) containing the specified offset, is returned. If OFFSET is
specified and rectype=“LD,” the ESD record for the symbol defined at or before
that location (within the containing section) is returned.

If OFFSET is specified, CLASS must also be specified.

� If SYMBOL is specified, all ESD records of the type(s) specified with that
symbol name are returned. If CLASS is specified, only ESD records which
define locations in that class are returned. Some records, such as SD and ER,
are not associated with any class and are never returned if class is specified.

The CURSOR parameter acts as a place holder when the selected data does not fit
in the buffer provided. On the next GETE request, the binder begins processing
where the last request left off.

If you interrupt a series of successive GETE calls, you should reset the value of the
cursor before continuing. Otherwise, the cursor value may be invalid and the
results of a GETE request are unpredictable.

The binder moves data into the buffer until either the buffer is full or no more data
exists meeting the selection criteria. Data is reformatted, if necessary, to conform
to the version identified in the caller's buffer. The COUNT parameter is set to the
number of records actually returned in the buffer.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

04 83000705 The specified symbol could not be located in the workmod.
No data is returned in the buffer.

04 83000800 An end-of-data condition was detected. Some data may have
been returned in buffer. There is no message associated with
this condition.

04 83000801 The requested item was not found in the workmod, or was
empty, or no records met the specified criteria. No data
returned.

04 83000812 The specified offset was negative or beyond the end of the
designated item or module. No data is returned in the buffer.

 Chapter 8. Using the Binder Application Programming Interface 175

 Using the API

Return
Code

Reason
Code

Explanation

12 83000101 OFFSET and SYMBOL have both been specified. Request
rejected.

12 83000102 Workmod is unbound. GETE request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the GETE
parameter list in general purpose register 1.

Figure 44. GETE Parameter List

PARMLIST DS 0F
DC A(GETE) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SECTION) Section name
DC A(RECTYPE) ESD record type(s)
DC A(OFFSET) Offset in module or section. If

not a selection criterion, set to
-1.

DC A(SYMBOL) Symbol name
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A(COUNT) Data count
DC A(CLASS+X'80000000') Text class and end-of-list indi-

cator
GETE DC H(62) GETE function code

| DC| H(03)| Parameter list version number
RECTYPE DC H(7),CL7'(SD,CM)' Sample varying string

 GETN: Get Names
GETN returns the names of each section or class in the workmod and a count of
the total number of sections or classes. The names returned also include names
generated by the binder to represent private code sections, unnamed common,
SEGTAB and ENTAB sections for overlay programs, and any other sections
created by the binder. GETN can only be performed on a bound workmod.

The syntax of the GETN call is:

[symbol] IEWBIND FUNC=GETN
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
[,AREA= buffer]
,CURSOR=cursor
,COUNT=count
,TCOUNT=tcount
[,NTYPE={SECTION|CLASS}]

176 DFSMS/MVS V1R4 Program Management

 Using the API

FUNC=GETN
specifies that a count of the number of sections in a workmod and, optionally,
the names of each section, be returned to a specified location.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

Note: This version must match the version you specify with the IEWBUFF
macro when you define the buffer passed on this call.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

AREA=buffer —RX-type address or register (2-12)
specifies the location of a buffer to receive the names. This buffer must be in
the format for section names. See “Generating and Mapping Data Areas” on
page 144 for information on buffer definition.

Section names will be moved until either the buffer is filled or all names have
been moved. This keyword is optional. If it is not specified, only the number of
section names in the workmod will be returned.

CURSOR=cursor —RX-type address or register (2-12)
specifies the location of a fullword integer which contains the position relative to
the start of the list of names at which the binder should begin processing.
Specifying a zero for this argument causes the binder to begin processing at
the beginning of the list. Offsets are specified in records and are relative to the

| start of the list. The cursor value is modified before returning to the caller.

COUNT=count —RX-type address or register (2-12)
specifies the location of a fullword integer in which the binder will indicate the
number of names actually returned in the buffer.

TCOUNT=tcount —RX-type address or register (2-12)
specifies the location of a fullword integer in which the binder will indicate the
total name count. TCOUNT indicates the total number of sections or classes in
the workmod, not just those returned in the buffer.

NTYPE={SECTION|CLASS}
specifies the type of names to be returned and counted. Specifying SECTION
causes the names of all sections in the workmod, including special sections, to
be returned. Specifying CLASS causes the names of all classes in the
workmod containing data to be returned. The value for NTYPE may be abbre-
viated as S or C. SECTION is the default.

 Chapter 8. Using the Binder Application Programming Interface 177

 Using the API

 Processing Notes
The CURSOR parameter acts as a place holder when the selected data does not fit
in the buffer provided. On the next GETN request, the binder begins processing
where the last request left off.

If you interrupt a series of successive GETN calls, you should reset the value of the
cursor before continuing. Otherwise, the cursor value may be invalid and the
results of a GETN request are unpredictable.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

04 83000800 An end-of-data condition was detected. Some data may have
been returned in buffer. There is no message associated with
this condition.

04 83000801 No section names exist. No data was returned.

08 83000750 The buffer is not large enough for one record. No data is
returned.

08 83000810 Cursor is negative or beyond the end of the specified item.
No data was returned.

12 83000102 Workmod is unbound. GETN request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the GETN
parameter list in general purpose register 1.

Figure 45. GETN Parameter List

PARMLIST DS 0F
DC A(GETN) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A(COUNT) Data count
DC A(TCOUNT) Total count
DC A(NTYPE+X'800000000') Name type to return and end-

of-list indicator
GETN DC H(60) GETN Function code

| DC| H(03)| Parameter list version
NTYPE DC CL1' ' 'C' = class; 'S' = section

| IMPORT: Import a Function or External Variable
| IMPORT describes a function or external variable to be imported and the library
| member where it can be found.

178 DFSMS/MVS V1R4 Program Management

 Using the API

| The syntax of the IMPORT call is:

| FUNC=IMPORT
| Requests import of a function or external variable.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| RETCODE=retcode —RX-type address or register (2-12)
| specifies the location of a fullword integer which is to receive the return code
| returned by the binder.

| RSNCODE=rsncode —RX-type address or register (2-12)
| specifies the location of a 4-byte hexadecimal string which is to receive the
| reason code returned by the binder.

| WORKMOD=workmod —RX-type address or register (2-12)
| specifies the location of an 8-byte area that contains the workmod token
| returned on the CREATEW request. This token must not be changed.

| ITYPE=CODE|DATA
| specifies the type of module contents.

| DLLNAME= dllname —RX-type address or register (2-12)
| Specifies the name of an area containing a halfword length field followed by the
| member or alias name of the module containing the imported function or vari-
| able. The length field defines the number of characters in the member name
| and must not be larger than 8 bytes for a directory member or alias, or 255
| bytes for an OpenEdition filename.

| INAME=iname —RX-type address or register (2-12)
| Specifies the name of an area containing a halfword length field followed by the
| name of the symbol to be processed. The length field defines the number of
| characters in the symbol name and must not be larger than 1024.

| [symbol]| IEWBIND| FUNC=IMPORT
| [,VERSION=version]
| [,RETCODE=retcode]
| [,RSNCODE=rsncode]
| ,WORKMOD=workmod
| ,ITYPE=itype
| ,DLLNAME= dllname
| ,INAME=iname

| Processing Notes
| If DLLNAME was not specified, the IMPORT statement will be ignored. Otherwise,
| if the symbol is unresolved at the end of autocall and all references have
| SCOPE=X, the IMPORT request will be converted to an entry in binder class
| B_IMPEXP. A bind job for a DLL application should include an IMPORT control
| statement for any DLLs that application expects to use. Otherwise if the DLL name
| is unresolved at static bind time it will not be accessible at run time (cannot be
| loaded).

 Chapter 8. Using the Binder Application Programming Interface 179

 Using the API

| Typically, a library of DLLs has an associated side file of IMPORT control state-
| ments, and you can include this side file when statically binding a module which
| imports functions or variables from that library. You can also edit the records in the
| side file or substitute your own IMPORT control statements so that some symbols
| are imported from DLLs in a different library.

| Return and Reason Codes
| The binder API reason codes are shown in Figure 31 on page 143.

| Return
| Code
| Reason
| Code
|
| Explanation

| 00| 00000000| Normal completion. The import request has been added to
| the binder's Import/Export list successfully.

| Parameter List
| If your program does not use the IEWBIND macro, place the address of the
| IMPORT parameter list in general purpose register 1.

| Figure 46. IMPORT Parameter List

| PARMLIST| DS| 0F
| DC| A(IMPORT)| Function code
| DC| A(RETCODE)| Return code
| DC| A(RSNCODE)| Reason code
| DC| A(WORKMOD)| Workmod token
| DC| A(ITYPE)| Import type
| DC| A(DLLNAME)| DLL Name
| DC| A(INAME+X'80000000')| Section name and end-of-list
| indicator
| IMPORT| DC| H(38)| IMPORT function code
| DC| H(03)| Parameter list version
| ITYPE| DC| CL1'C'| Import Type
| "C" = Code
| "D" = Data
| DLLNAME| | H'nnn',CLnnn| DLL containing symbol
| INAME| | H'nnn',CLnnn| Imported function or variable

 INCLUDE: Include Module
INCLUDE brings data into the workmod. The source is usually a data set which
may contain a program object, a load module, or a combination of object modules
and control statements. In some cases, the program module may be included from
virtual storage rather than an external data set. Multiple INCLUDE calls cause all
included program objects, load modules, and object modules to be merged in the
specified workmod. You may specify an OpenEdition file as the DDNAME param-
eter value on an INCLUDE statement.

180 DFSMS/MVS V1R4 Program Management

 Using the API

The syntax of the INCLUDE call is:

FUNC=INCLUDE
specifies the source of modules to be included in a workmod.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

INTYPE={NAME|POINTER|TOKEN}
specifies whether the input is identified by a name, a pointer, or a token. The
values are as follows:

| NAME
| The input is obtained from a sequential data set, a program library, or an
| OpenEdition file.

| The DDNAME-MEMBER parameter combination, or PATHNAME, must be
| specified when INTYPE=NAME.

| � If DDNAME refers to a program library, MEMBER must also be speci-
| fied. NAME is required when INTENT=BIND.

| � If PATHNAME is specified, it must be an absolute or relative
| OpenEdition pathname which resolves to the desired file (member)
| name. Note that MEMBER cannot be specified with PATHNAME.

[symbol] IEWBIND FUNC=INCLUDE
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,INTYPE={NAME|POINTER|TOKEN}

| {({,DDNAME= ddname[
| ,MEMBER=member])|PATHNAME}

 {,DCBPTR=dcbptr,DEPTR=deptr}
 {,EPTOKEN=eptoken}}
[,ATTRIB={YES|NO }]
[,ALIASES={YES|NO }]

 Chapter 8. Using the Binder Application Programming Interface 181

 Using the API

POINTER
The input is to be obtained from a member in a partitioned data set.
DCBPTR and DEPTR must both be specified. This value is only valid
when the processing intent specified on the CREATEW call is ACCESS.

TOKEN
The input is represented by a token from the CSVQUERY macro.
EPTOKEN must be specified. This value is only valid when the processing
intent specified on the CREATEW call is ACCESS. The program module
has already been loaded into virtual storage. Use this option instead of
POINTER for modules in PDSE libraries.

The value for INTYPE may be abbreviated as N, P, or T.

DDNAME=ddname —RX-type address or register (2-12)
specifies the location of a 16-byte varying character string which contains the
ddname of the sequential data set or program library to be included in the
workmod. If a program library is specified, MEMBER must also be specified.

| The DDNAME-MEMBER parameter combination is mutually exclusive with
| PATHNAME.

MEMBER=member —RX-type address or register (2-12)
specifies the location of an 8-byte varying character string which contains the
member name or alias of the library member to be included in the workmod.

| PATHNAME=pathname —RX-type address or register (2-12)
| specifies the location of a 1024-byte varying character string which contains the
| absolute or relative path name of an OpenEdition file. Note that PATHNAME
| must resolve to the file which is to be included.
| PATHNAME is mutually exclusive with the DDNAME-MEMBER parameter com-
| bination.

DCBPTR=dcbptr —RX-type address or register (2-12)
specifies the location of a 4-byte pointer which contains the address of a DCB
for the partitioned data set or PDSE containing the input module to be included.
You code the DCB with the parameters DSORG=PO, MACRF=R, and
RECFM=U|F. The DCB must be opened before calling the INCLUDE function.

| Note:

| The binder is sensitive to the state of the DCB pointed to by the DCBPTR. The
| DCB must not be closed and re-opened while the binder accesses the corre-
| sponding data set during a dialog. Once it is opened initially for an INCLUDE,
| it must remain open until after the binder's ENDD call takes place.

| Note that when you alter your DCB as described above, using RESETW (or
| DELETEW followed by CREATEW) is not enough to re-access your data set at
| a later time during the same binder dialog. This only causes the data set's
| information to remain with the dialog, and such information is no longer valid
| once the DCB is closed. An attempt to reuse the altered DCB in the same
| binder dialog may produce unpredictable results.

DEPTR=deptr —RX-type address or register (2-12)
specifies the location of a 4-byte pointer which contains the address of a single
directory entry for the partitioned data set or PDSE member to be included.
The directory entry is in the PDS2 format. This is the format returned by BLDL.
The parameter is required if DCBPTR was specified. DEPTR is valid only if
INTENT=ACCESS.

182 DFSMS/MVS V1R4 Program Management

 Using the API

EPTOKEN=eptoken —RX-type address or register (2-12)
specifies the location of an 8-byte area containing the entry point token
received with the CSVQUERY macro. EPTOKEN is required when the
program module has already been loaded in virtual storage. EPTOKEN is valid
only if INTENT=ACCESS.

| The binder can retrieve a module identified by an eptoken only if the module
| was loaded by the MVS/DFP loader. In particular, eptoken cannot be used to
| retrieve a module in LPA or LLA.

ATTRIB={YES|NO }
specifies whether to include the program module attributes with the program
module. These attributes override attributes set at the dialog level by SETO or
STARTD and any attributes set by prior INCLUDE calls. They do not override
attributes set at the workmod level by SETO. The values for ATTRIB can be
abbreviated as Y or N.

ALIASES={YES|NO }
specifies whether to include the program module aliases with the program
module. Aliases may be included only if you are including a module from a
library. If you specify either a sequential data set OE file or a specific member
of a library in the JCL, aliases cannot be included. The values for ALIASES
can be abbreviated as Y or N. NO is the default.

 Processing Notes
If ATTRIB=YES , these attributes are copied from the input directory: AC, AMODE,
DC, OL, REUS, RMODE, SSI, TEST, ENTRY POINT, and MIGRATABLE. If
INTENT=ACCESS, these additional attributes are copied: EDITABLE, EXECUT-
ABLE, OVLY, and PAGE-ALIGNED. You cannot set the EXECUTABLE,
MIGRATABLE, and PAGE-ALIGNED attributes with either SETO or STARTD.

When INTENT=ACCESS is specified on CREATEW, only one data set may be
included in the workmod and the data set must be a program object or load
module.

If INTENT=ACCESS and ALIASES=YES , the aliases and any associated
addressing modes are included. If INTENT=BIND and ALIASES=YES , the aliases
are included, but the associated addressing modes are not.

When INTENT=BIND, the ddname may refer to a concatenation of data sets or. to
an OE file. These data sets must be either all libraries or all sequential data sets.
If the ddname refers to a library and the member name has been provided on the
JCL, then it is processed sequentially and can only be concatenated with other
library members or sequential data sets. Each library member must contain either
a single program module or a mixture of object modules and control statements.
Sequential data sets may only contain object modules and control statements.

The processing of INCLUDE may be modified by the ALTERW function. CSECTs
and symbols may be replaced or deleted in an included module when specified on
earlier ALTERW calls or equivalent control statements. The scope of such alter-
ations extends only to the first end-of-module condition encountered in the included
file. Additional modules can not be included into the workmod once it has been
bound.

 Chapter 8. Using the Binder Application Programming Interface 183

 Using the API

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. File included successfully.

04 83000515 Unsupported control statement encountered in included file.
File included successfully.

04 83000525 An unusual condition was encountered while processing a
REPLACE or CHANGE control statement.

04 83000526 An unusual condition was encountered in an input module,
while converting it into workmod format. For example, this
reason code will be returned if a two-byte relocatable adcon
was seen.

08 83000502 One or more editing requests (delete, change or replace oper-
ations) failed during inclusion of the module. The module was
included successfully, but some of the requested changes
were not made.

08 83000505 The included module was marked “not editable,” and has been
deleted.

08 83000507 A format error has been encountered in a module being
included. The module was not added to the target workmod.

08 83000510 Errors were encountered in the included module. The module
is rejected.

08 83000511 A control statement in an included file attempted to include the
file containing the statement, or include another file which, in
turn, included the original file. The recursive include has been
rejected.

08 83000514 The requested member could not be found in the library, or
the library could not be found. Request rejected.

08 83000516 A format error has been encountered in one or more control
statements being included. The erroneous statements have
been ignored.

08 83000517 A NAME control statement was encountered, but no target
library (MODLIB) had been specified. The statement was
ignored.

08 83000518 A NAME control statement was encountered in a secondary
input file. The statement was ignored.

08 83000519 Errors (invalid data) were found in a module being brought in
by an INCLUDE control statement. The module was not
included.

08 83000520 The data set or library member specified by an INCLUDE
control statement could not be found. The data set or library
member was not included.

08 83000521 An I/O error occurred while trying to read an input data set (or
directory) specified on an INCLUDE control statement. The
data set (or member) was not included.

08 83000522 The input data set specified on an INCLUDE control statement
could not be opened. The data set (or member) was not
included.

184 DFSMS/MVS V1R4 Program Management

 Using the API

If the INCLUDE brings in control statements, the processing of these control state-
ments may potentially generate calls to other binder functions. The errors and their
corresponding reason codes from the functions invoked by the generated calls are
propagated back to the caller of the INCLUDE function. The functions may include:

 � ADDA
 � ALIGNT
 � ALTERW
 � BINDW
 � CREATEW
 � DELETW
 � INSERTS
 � ORDERS
 � PUTD
 � RESETW
 � SAVEW
 � SETL
 � SETO
 � STARTS

Return
Code

Reason
Code

Explanation

12 83000101 Not all the parameters required for the specified INTYPE (as
described above) were provided. The request has been
rejected.

12 83000103 The workmod was specified with INTENT=BIND, but the
INTYPE was other than DDNAME. The request has been
rejected.

12 83000500 The INCLUDE call has attempted to include a second module
when the processing intent is ACCESS. The request has
been rejected.

12 83000503 An I/O error occurred while trying to read the input data set or
its directory. The input is not usable.

12 83000504 The module was successfully included, but the ALIASES or
ATTRIB option could not be honored because the directory
was not accessible.

12 83000506 An attempt has been made to include an object module into a
workmod specified as INTENT=ACCESS. Request rejected.

12 83000509 An attempt has been made to include a file containing control
statements, but the workmod specified INTENT=ACCESS.
The request has been rejected.

12 83000512 The designated source for the current INCLUDE contained
more than one module, but the target workmod was specified
with INTENT=ACCESS. The request has been rejected.

12 83000513 The file could not be opened. Request rejected.

12 83000523 For intent access, the requested module contained a format
error, and has not been placed in workmod. Request rejected.

 Chapter 8. Using the Binder Application Programming Interface 185

 Using the API

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
INCLUDE parameter list in general purpose register 1.

Figure 47. INCLUDE Parameter List

PARMLIST DS 0F
DC A(INCLUDE) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(INTYPE) Intype
DC A(DDNAME) ddname or pathname.

Pathname is only valid if
INTYPE=N.

DC A(MEMBER) Member name. A(0) should be
coded if PATHNAME is speci-
fied.

DC A(DCBPTR) Pointer to DCB
DC A(DEPTR) Pointer to BLDL entry
DC A(EPTOKEN) EPTOKEN
DC A(0)
DC A(ATTRIB) ATTRIB option
DC A(ALIASES+X'80000000') ALIASES option and end-of-list

indicator
INCLUDE DC H(40) Function code

| DC| H(03)| Parameter list version
INTYPE DC CL1'N' INTYPE source option

"N" = Name
"P" = Pointer
"T" = Token

ATTRIB DC CL1'Y' ATTRIB option
"Y" = Yes
"N" = No

ALIASES DC CL1'Y' ALIASES option
"Y" = Yes
"N" = No

 INSERTS: Insert Section
INSERTS positions a control section or named common area within the program
module or within overlay segments in an overlay structure. This specification is
overridden by the order specified on an ORDERS call.

The syntax of the INSERTS call is:

FUNC=INSERTS
requests that a specified control section be positioned at the current location
within the program module or overlay segment.

[symbol] IEWBIND FUNC=INSERTS
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,SECTION=section

186 DFSMS/MVS V1R4 Program Management

 Using the API

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

SECTION=section —RX-type address or register (2-12)
specifies the location of a 16-byte varying character string which contains the
name of the control section or named common area to be inserted at the
current location.

 Processing Notes
The INSERTS function is valid only when the processing intent is BIND.

In an overlay structure, INSERTS places the section within the overlay segment
defined by the preceding OVERLAY control statement or STARTS function.
Sections named on insert functions which precede the first STARTS, as well as
those not named on any insert statements, are placed in the root segment.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Positioning of section will take place
during bind operation.

04 83000711 An insert was already processed for this section, and has
been replaced.

12 83000104 INSERT is not valid against a workmod specified with
INTENT=ACCESS. Request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
INSERTS parameter list in general purpose register 1.

 Chapter 8. Using the Binder Application Programming Interface 187

 Using the API

Figure 48. INSERTS Parameter List

PARMLIST DS 0F
DC A(INSERTS) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SECTION+X'80000000') Section name and end-of-list

indicator
INSERTS DC H(36) INSERTS function code

| DC| H(03)| Parameter list version number

 LOADW: Load Workmod
LOADW produces an executable copy of the workmod and returns its entry point
and optionally its load point and length. The workmod is bound but control is not
passed to it after it is loaded.

Program modules that are identified to the system with this call can later be
invoked using the LINK, ATTACH, and XCTL macros. Programs that have not
been identified to the system can later be invoked using the CALL macro. See
OS/390 MVS Assembler Services Guide for information about using these macros.

The syntax of the LOADW call is:

FUNC=LOADW
specifies that the workmod is to be bound and loaded but not executed.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

[symbol] IEWBIND FUNC=LOADW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,IDENTIFY={YES|NO}
,EPLOC=eploc
[,XTLST=xtlst]
[,LNAME= name]

188 DFSMS/MVS V1R4 Program Management

 Using the API

IDENTIFY={YES|NO}
specifies whether or not the loaded program module is to be identified to the
system. If you specify YES, you can optionally provide the name by which the
module is to be identified as the argument LNAME. In either case, the entry
point address is returned as the argument EPLOC. The value for IDENTIFY
may be abbreviated as Y or N.

EPLOC=eploc —RX-type address or register (2-12)
specifies the location of a 4-byte area which is to receive the entry point
address of the loaded program module. This argument is required.

XTLST=xtlst —RX-type address or register (2-12)
specifies the address of a buffer which is to receive the extent list of the loaded
program module. This list contains one entry for each contiguous block of
storage used for the loaded program module. See Appendix J, “Binder API
Buffer Formats” on page 393 for a description of the structure of an extent list.
This argument is required if you code IDENTIFY=NO; it is optional if you code
IDENTIFY=YES.

LNAME=name —RX-type address or register (2-12)
specifies the location of an optional 8-byte varying character string which con-
tains the name by which the program module is to be made known to the
system. This argument is recognized only when IDENTIFY=YES. If
IDENTIFY=YES and this argument is not specified or a null value is provided,
the name specified with the LNAME option on a SETO call is used. If no value
was specified on a SETO call, the LNAME name defaults to **GO.

 Processing Notes
Storage for the program module is obtained from the caller's subpool zero. If you
code IDENTIFY=NO, the storage described by the extent list should be freed when
the program module is no longer required.

If the bound module contains more than one text class, all such classes are concat-
enated and loaded into contiguous storage locations.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

04 83000655 The buffer provided room for only one extent, but a second
extent exists for the loaded module. The module was loaded
successfully.

04 83000603 The AMODE or RMODE of one or more input ESD records is
incompatible with the AMODE or RMODE of the primary entry
point.

| 04| 83000604| There was a conflict in the AMODE/RMODE specification of
| the current module. This means that 1) The AMODE/RMODE
| combination is invalid, or one of the MODEs is invalid, or 2)
| OVLY was specified but either AMODE or RMODE is not (24).
| The module was loaded with AMODE(24) and RMODE(24).

 Chapter 8. Using the Binder Application Programming Interface 189

 Using the API

Return
Code

Reason
Code

Explanation

04 83000605 No entry name has been provided, either by the user or from
any object module processed. The entry point will default to
the first text byte.

| 04| 83000607| The module was loaded successfully, but the indicated 2-byte
| adcon(s) did not relocate correctly.

04 83000657 The module was loaded with AMODE(24), but one or more
references in the module were resolved to modules in the
Extended LPA. Load successful.

08 83000306 The module was loaded, but the binder could not produce the
load summary report.

08 83000650 The entry name specified was not defined in the loaded
module. The entry point was forced to the first text byte.

12 83000101 Identify was set to NO, but no extent list buffer was provided.
Request rejected.

12 83000415 The module to be loaded contains no text. Execution impos-
sible.

12 83000651 The IDENTIFY for the loaded module failed, probably due to
the existence of another module of the same name. The
module was loaded successfully, but cannot be accessed by
system-assisted linkage.

12 83000652 Sufficient storage was not available to load the module. The
module is not loaded.

12 83000653 An error of severity greater than that allowed by the current
LET value was encountered. The module is not loaded.

12 83000656 The module was bound in overlay format, and cannot be
loaded. Request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
LOADW parameter list in general purpose register 1.

Figure 49. LOADW Parameter List

PARMLIST DS 0F
DC A(LOADW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(IDENT) Identify option
DC A(EPLOC) Entry point address
DC A(XTLST) Extent list
DC A(NAME+X'80000000') Name used for identify and

end-of-list indicator
LOADW DC H(81) LOADW function code

| DC| H(03)| Parameter list version number
IDENT DC CL1'Y' Identify option

"Y" = Yes
"N" = No

190 DFSMS/MVS V1R4 Program Management

 Using the API

 ORDERS: Order Sections
ORDERS allows you to specify the location of a section (control section or common
area) within the program module. You determine the sequencing of multiple
sections using multiple ORDERS requests.

The syntax of the ORDERS call is:

FUNC=ORDERS
| requests the order section function. It may be abbreviated as ORDER.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

SECTION=section —RX-type address or register (2-12)
specifies the location of a 16-byte varying character string which contains the
name of the section to be ordered.

[symbol] IEWBIND FUNC=ORDERS
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,SECTION=section

 Processing Notes
An ORDERS request is valid only when the processing intent is BIND.

ORDERS requests cause the named sections to be moved to the beginning of the
module or overlay segment in the same sequence as the ORDERS calls are
received by the binder. If a section name appears in more than one call, the last
request is used.

Reordering does not occur until the workmod is bound, regardless of when the
ORDERS call is made.

Sections that are not specified in ORDERS calls follow sections that have been
ordered. In an overlay module, ORDERS calls may specify sections in more than
one segment but sections will never be moved from one segment to another.

 Chapter 8. Using the Binder Application Programming Interface 191

 Using the API

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Sections will be ordered during bind proc-
essing.

08 83000711 A previous order request for this section was received, and
has been replaced.

12 83000104 An ORDERS request is invalid against a workmod specified
with INTENT=ACCESS. Request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
ORDERS parameter list in general purpose register 1.

Figure 50. ORDERS Parameter List

PARMLIST DS 0F
DC A(ORDERS) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SECTION+X'80000000') Section name and end-of-list

indicator
 ORDERS DC H(37) ORDERS function code

| DC| H(03)| Parameter list version number

 PUTD: Put Data
PUTD stores data into a new or existing workmod item. If the item already exists,
the data overlays existing data in the item, or is added at the end. If the item does
not yet exist, a new one is created using the specified class and section names.

The syntax of the PUTD call is:

label
Optional symbol. If present, the label must begin in column 1.

FUNC=PUTData
Requests the Put Data function. It may be truncated to PUTD.

[symbol] IEWBIND FUNC=PUTD
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,CLASS=class
,SECTION=section
[,AREA=buffer]
[,CURSOR=cursor]
[,COUNT=count]
[,NEWSECT={NO|YES}]
[,ENDDATA= {NO|YES}]

192 DFSMS/MVS V1R4 Program Management

 Using the API

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

Note: This version must match the version you specify with the IEWBUFF
macro when you define the buffer passed on this call.

RETCODE=retcode —RX-type address or register (2-12)
Specifies the name of a fullword integer variable which is to receive the com-
pletion code returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
Specifies the name of a 4-byte hexadecimal string variable which is to receive
the reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
Specifies the name of an 8-byte variable which contains the Workmod Token
returned by the program management binder on the CREATEW request. This
token must not be modified by the caller.

CLASS=class —RX-type address or register (2-12)
Specifies the name of an 16-byte varying character string variable containing
the class name, left adjusted.

Certain binder-defined classes are generated by the binder and should not be
specified if the workmod was created with INTENT=BIND

B_PRV Pseudoregister vector

B_IDRB Binder identification record

B_MAP Module map

| B_PARTINIT Part initializers

| B-IMPEXP Import export table

| B_LIT Loader information table

SECTION=section —RX-type address or register (2-12)
Specifies the name of a 1024-byte varying character string variable containing
the name of the section to be processed.

AREA=buffer —RX-type address or register (2-12)
Specifies the name of a standard buffer containing the data to be replaced in or
appended to the designated workmod item. This parameter is not required if
the caller wishes only to signal and end-of-section condition.

CURSOR=cursor —RX-type address or register (2-12)
Specifies the name of a fullword integer variable which indicates to the program
management binder the position (relative record or byte) in the item at which to
store the buffered data.

If CURSOR = is omitted, the buffered data is appended to the existing item. If
INTENT=ACCESS, only B_IDR- and B_SYM-class items may be appended.
CURSOR is valid only if AREA has been specified.

 Chapter 8. Using the Binder Application Programming Interface 193

 Using the API

COUNT=count —RX-type address or register (2-12)
Specifies the name of a fullword integer variable containing the number of data
bytes or records to be inserted. COUNT may not be specified unless AREA is
specified.

NEWSECT= {def.NO|YES}
Specifies that one or more new sections are being added to the workmod, and
that the data present in the buffer belongs to one of those sections. Once
NEWSECT=YES has been specified, all subsequent PUTD calls must also indi-
cate NEWSECT=YES, until all of the new sections are complete (see
ENDDATA parameter, below). YES or NO may be abbreviated “Y” or “N,”
respectively. NO is the default.

ENDDATA= {def.NO|YES}
ENDDATA=YES indicates that all of the sections being added by this series of
PUTD calls are complete, and that certain validity checks are to be performed
on the ESD and RLD. Any data in the buffer is added to the workmod before
validation begins. YES or NO may be abbreviated “Y” or “N,” respectively. NO
is the default.

 Processing Notes
CLASS may contain any valid data class except B_IDRB, and SECTION should
contain the name of the csect being created or updated. If INTENT=ACCESS,
ESD and RLD data may not be modified, nor TEXT extended.

CURSOR allows the caller to replace part of an existing item. It contains the offset,
relative to the start of the item, at which the buffered data is to be inserted. If
CURSOR = is omitted, the buffered data is added to the end of the item. If
CURSOR contains zero, the data is stored starting at the first byte or record.

The BUFFER must be in the standard format for the data class being stored. See
Appendix J, “Binder API Buffer Formats” on page 393 for additional information on
standard buffer formats.

The Binder moves the specified number of bytes or records from the buffer into
workmod. Data is reformatted, if necessary, to conform to the internal format of the
data in workmod.

PUTD operates in either INPUT or EDIT mode. INPUT mode is used when adding
new sections to the workmod (INTENT must be BIND), and begins with the first
PUTD call specifying NEWSECT=YES and continues until ENDDATA=YES is
received. While in INPUT mode, there are certain restrictions on acceptable
program management binder functions. The only functions allowed against a
workmod in INPUT mode (those for which an input workmod token matches that of
the workmod in INPUT mode) are PUTD with NEWSECT = YES, RESETW, or
DELETEW. RESETW, DELETEW, and ENDD causes the operation to be prema-
turely terminated.

In INPUT mode, sections being added are held in a temporary workmod until
ENDDATA=YES is received, at which time all of the new sections are validated as
a unit and added to the target workmod. If any of the new sections fail validation,
the entire group is discarded; otherwise, sections are added to the permanent
workmod according to normal merge rules. If the new section already exists, it
does not replace the existing one. If a deferred ALTERW request is pending, it is

194 DFSMS/MVS V1R4 Program Management

 Using the API

applied to all sections in the temporary workmod before merging them into the per-
manent workmod.

Certain additional requirements are placed on the user when entering module data
in input mode.

� Only one private code and/or blank common section can be handled during one
PUTD call series (a series being terminated by an end-of-data indication).

� For any section, the first class received must be B_ESD. More than one
section can be passed in a PUTD series, but the first class in any section must
be B_ESD.

� The first record in the first buffer of any B_ESD element must be the section
definition record (SD). This ensures that the first PUTD call for any section
identifies the section type.

Validation of the module in the temporary workmod proceeds one section at a time.
Violation of any of the following restrictions causes a validation failure for that
section:

� No ESD item exists for the section.

� The ESD item does exist, but does not contain a type SD ESD record.

� One or more of the ESD records contains an invalid ESD_TYPE. Only types
SD, CM, ED, LD, ER, and PR are expected via PUTD. ESD_TYPEs of ST, ET,
DS and PD are not acceptable for PUTD input.

� One or more LD records have a section offset (ESD_SECTION_OFFSET)
greater than the ESD section length (ESD_LENG from the SD record).

� Text length exceeds ESD section length.

� (RLD_SECTION_OFFSET + RLD_ADCON_LENGTH) exceeds ESD section
length.

EDIT mode is used to update existing data items, or to add new items to an
existing section. EDIT mode begins with the first PUTD call specifying
NEWSECT=NO (the default) and continues until ENDDATA=YES is received. In
EDIT mode, each PUTD call is completely processed before returning to the caller.
Some validation is performed on ESD and RLD type data as it is received, to
prevent consistency or integrity problems in the target module. This includes all of
the same checks listed above for input mode, except the last.

Note: Because EDIT mode checking is done on a single buffer rather than an
entire item, the sequence in which the individual data classes are updated may
affect the successful validation of the buffered data. To avoid possible timing prob-
lems, section data should be updated in the following sequence:

� ESD section record (type SD or CM)
� Other ESD data

 � Text
 � RLD
 � Other classes

If INTENT=ACCESS, certain restrictions apply. B_ESD and B_RLD items cannot
be created or modified. TEXT items cannot be created or have their lengths
extended.

 Chapter 8. Using the Binder Application Programming Interface 195

 Using the API

If INTENT=BIND, SECTION must contain blanks or a user-assigned name con-
sisting only of characters between x'41' and x'FE' (or x'0E' or x'0F'). A section
name of all blanks should be used for private code or blank common. Special
names, which always begin with a character invalid for user-assigned names, are
created by the program management binder and may only be used by the caller
when modifying an existing item. Such modification requires INTENT=ACCESS.
Private code special names created by the program management binder can not be
used in the PUTD call for section name with INTENT=BIND.

Only one private code or blank common section (not both) can be handled during
one PUTD call series (a series being terminated by an end-of-data indication).
Section names used in the SECTION field of the call parameter list must be the
same as the ESD_NAME field in the supplied ESD input record.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Data inserted in workmod.

04 83000801 No data was passed. Module has not been changed.

12 83000101 Buffer not large enough to contain the designated number of
bytes or records. Request rejected.

12 83000802 NEWSECT was set to 'Yes', but workmod intent is ACCESS.
Request rejected.

12 83000803 Workmod intent is ACCESS, but the target section does not
exist. Request rejected.

12 83000804 PUTD cannot be used to modify ESD or RLD data (even in an
existing section) in a workmod specified with
INTENT=ACCESS. Request rejected.

12 83000805 PUTD cannot be used to extend the length of text data in a
workmod specified with INTENT=ACCESS. Request rejected.

12 83000806 PUTD cannot be used to modify sections generated by the
binder. Request rejected.

12 83000807 Incorrect parameter specification. The call attempted to
modify an existing item with NEWSECT=YES, or it specified
NEWSECT=NO while the binder was still in input mode.
Request rejected.

12 83000808 PUTD cannot be used to modify the IDRB record. Request
rejected.

12 83000811 One or more errors was detected in the module just com-
pleted. The CSECT(s) was not added to the workmod.

12 83000814 One or more errors were detected in the data records in the
buffer just passed to the program management binder. The
records were not added to workmod.

12 83000815 One or more section or class names encountered in a trans-
port file are not valid. A program object is not produced.

196 DFSMS/MVS V1R4 Program Management

 Using the API

 Parameter List
Figure 51. PUTD Parameter List

PARMLIST DS 0F
DC A(PUTD) Function Code
DC A(RETCODE) Return Code
DC A(RSNCODE) Reason Code
DC A(WORKMOD) Workmod Token
DC A(CLASS) Class Name
DC A(SECTION) Section Name
DC A(BUFFER) Standard Data Buffer
DC A(CURSOR) Starting Position

To append data, set
cursor value to (-1).

DC A(COUNT) Data Count
DC A(NEWSECT) New section flag
DC A(ENDDATA+X'80000000') End-of-data flag

PUTD DC H(65) PUTD Function Code
| DC| H(03)| Parameter List Version

NEWSECT DC CL1'Y' New section flag
"Y" = Yes
"N" = No

ENDDATA DC CL1'Y' End-of-data flag
"Y" = Yes
"N" = No

| RENAME: RENAME Symbolic References
| This function renames a symbolic reference from a long name to a short name if a
| reference to the old name remains unresolved at the end of the first pass of
| autocall. See Chapter 4, “Defining Batch Input to the Binder” on page 43, section
| “Resolving External References,” for a complete explanation of the autocall
| process.

| The syntax of the RENAME call is:

| FUNC=RENAME
| Requests the RENAME function.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| RETCODE=retcode —RX-type address or register (2-12)
| specifies the location of a fullword integer which is to receive the return code
| returned by the binder.

| [symbol]| IEWBIND| FUNC=RENAME
| [,VERSION=version]
| [,RETCODE=retcode]
| [,RSNCODE=rsncode]
| ,WORKMOD=workmod
| ,OLDNAME=oldname
| ,NEWNAME=newname

 Chapter 8. Using the Binder Application Programming Interface 197

 Using the API

| RSNCODE=rsncode —RX-type address or register (2-12)
| specifies the location of a 4-byte hexadecimal string which is to receive the
| reason code returned by the binder.

| WORKMOD=workmod —RX-type address or register (2-12)
| specifies the location of an 8-byte area that contains the workmod token
| returned on the CREATEW request. You must not modify this token.

| OLDNAME=oldname —RX-type address or register (2-12)
| specifies the location of an 1024-byte varying character string which contains
| the symbol to be renamed. The format consists of a 2-byte length field fol-
| lowed by the actual name. The length does not include the first two bytes.

| NEWNAME=newname —RX-type address or register (2-12)
| specifies the location of an 1024-byte varying character string which contains
| the symbol to which the old name should be changed. The format consists of
| a 2-byte length field followed by the actual name. The length does not include
| the first two bytes.

| Processing Notes
| The only immediate result of the RENAME API call is that the new rename request
| will be added to the list of such requests. Nothing else will be done until final
| autocall processing. At the end of the first pass of autocall (that is, when all pos-
| sible references have been resolved with the names as they were on input),
| rename processing will be performed.

| Return and Reason Codes
| The common binder API reason codes are shown in Figure 31 on page 143.

| Return
| Code
| Reason
| Code
|
| Explanation

| 00| 00000000| Normal completion. The binder added the rename request to
| the rename list successfully.

| 04| 83000501| Either the OLDNAME or the NEWNAME already existed in the
| binder rename list. The rename request was not successful
| (i.e., the request was not added to the binder rename list).

| Parameter List
| If your program does not use the IEWBIND macro, place the address of the
| RENAME parameter list in general purpose register 1.

| Figure 52. RENAME Parameter List

| PARMLIST| DS| 0F
| DC| A(RENAME)| Function code
| DC| A(RETCODE)| Return code
| DC| A(RSNCODE)| Reason code
| DC| A(WORKMOD)| Workmod token
| DC| A(OLDNAME)| Reason code
| DC| A(NEWNAME+X'80000000')| RENAME list & end-of-list indi-
| cator
| RENAME| DC| H(22)| RENAME function code value
| DC| H(03)| Parameter list version
| OLDNAME| DC| H'nnn',CLnnn| Old name
| NEWNAME| DC| H'nnn',CLnnn| New name

198 DFSMS/MVS V1R4 Program Management

 Using the API

RESETW: Reset Workmod
RESETW resets a workmod to its initial state. All items are deleted. Options are
reset to the options current for the dialog and the processing intent must be respec-
ified. The workmod token is not changed.

If a workmod has been changed without being saved or loaded, it cannot be reset
without specifying PROTECT=NO.

The syntax of the RESETW call is:

FUNC=RESETW
specifies that a workmod be reset to its original state.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

INTENT={BIND|ACCESS}
specifies the range of binder services which may be requested for this
workmod. The possible arguments are as follows:

BIND
specifies that the processing intent for this workmod is bind. The workmod
will be bound, and all binder functions may be requested.

ACCESS
specifies that the processing intent for this workmod is access. The
workmod will not be bound, and no services that may alter the size or
structure of the program module can be requested. See “Processing
Intents” on page 136 for a list of the services that are not allowable.

The argument for INTENT may be abbreviated as B or A.

[symbol] IEWBIND FUNC=RESETW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,INTENT={BIND|ACCESS}
[,PROTECT={YES|NO}]

 Chapter 8. Using the Binder Application Programming Interface 199

 Using the API

PROTECT={YES|NO}
specifying PROTECT=NO allows the binder to reset a workmod that has been
altered but not yet saved or loaded. The argument for PROTECT may be
abbreviated as Y or N. YES is the default.

 Processing Notes
The binder is sensitive to the state of the DCB pointed to by the DCBPTR in an
INCLUDE call. The DCB must not be closed and re-opened while the binder
accesses the corresponding data set during a dialog. Once it is opened initially for
an INCLUDE call, it must remain open until after the binder's ENDD call takes
place.

Note that if you do alter your DCB as described above, using RESETW (or
DELETEW followed by CREATEW) is not enough to re-access your data set at a
later time during the same binder dialog. This only causes the data set's informa-
tion to remain with the dialog, and such information is no longer valid once the DCB
is closed. An attempt to reuse the altered DCB in the same binder dialog may
produce unpredictable results. To avoid this, you need to end your dialog (ENDD)
and start a new one (STARTD).

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Workmod has been reset.

12 83000709 The workmod was in an altered state, but PROTECT=YES
was specified or defaulted. RESETW request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
RESETW parameter list in general purpose register 1.

Figure 53. RESETW Parameter List

PARMLIST DS 0F
DC A(RESETW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(INTENT) Processing intent
DC A(PROTECT+X'80000000') Protection flag and end-of-list

indicator
RESETW DC H(19) RESETW function code

| DC| H(03)| Parameter list version number
INTENT DC CL1'A' Processing intent

"A" = Access
"B" = Bind

PROTECT DC CL1'Y' Protection flag
"Y" = Yes
"N" = No

200 DFSMS/MVS V1R4 Program Management

 Using the API

 SAVEW: Save Workmod
SAVEW saves a workmod either as a load module in a partitioned data set or in a
PDSE or an OpenEdition file. If the workmod has not already been bound, it is
bound before being saved.

The syntax of the SAVEW call is:

FUNC=SAVEW
specifies that a workmod is to be bound and stored in a program library.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

MODLIB=ddname|pathname —RX-type address or register (2-12)
specifies the location of an 8-byte varying character string which contains the
ddname of the target library. If this parameter is not specified, the MODLIB
value set on the STARTD or SETO call is used.

| pathname specifies the location of a 1024-byte varying character string which
| contains the absolute or relative path name of an OpenEdition file. Note that
| PATHNAME must resolve to the file which is to be saved. PATHNAME is
| mutually exclusive with ddname

SNAME=member —RX-type address or register (2-12)
specifies the location of an 1024-byte varying character string which contains
the member name of the program to be saved in the target library. If this
parameter is not specified, the member name on the DD statement for the
program library is used. If neither of these is specified, the SNAME value on
the STARTD or SETO call is used. If no value for SNAME is specified any-
where, the call fails. If SNAME exceeds 8 bytes, the binder generates an
8-byte primary name and saves the specified name as a special alias, called

[symbol] IEWBIND FUNC=SAVEW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod

| [,MODLIB= ddname|pathname]
[,SNAME=member]
[,REPLACE={YES|NO }]

 Chapter 8. Using the Binder Application Programming Interface 201

 Using the API

the “alternate primary.” For more information on long names see “NAME
Statement” on page 88.

REPLACE={YES|NO }
specifies whether or not the program module will replace an existing member of
the same name in the target library. This argument may be abbreviated as Y
or N. NO is the default.

 Processing Notes
Aliases that have been specified on ADDA calls or included with an input module
are added to the library directory. Existing aliases that are not specified on a
replacement module are deleted if the target library is a PDSE. They remain
unchanged if the target library is a partitioned data set. All aliases should be
respecified to ensure proper updating.

If the NE (not editable) option has been specified, or if a module with the NE attri-
bute is copied, then no ESD items are saved and the module is marked “not-
editable” in the directory entry. Program objects always contain ESD information,
but the module is marked “not-editable.” Not-editable modules can only be reproc-
essed by the binder if INTENT=ACCESS.

If you specify REPLACE=NO when processing an OpenEdition file, the binder
issues an informational message.

If any of the following conditions exist, the output module is not saved:

� The module was bound with the RES option and one or more references were
resolved to modules in the link pack area.

� The module was marked not-executable and an executable module of the
same name already exists in the target library. This restriction can be over-
ridden through the use of the STORENX option. See “STORENX: Store Not-
Executable Module” on page 123.

� The target library is a partitioned data set and the module exceeds the
restrictions for load modules. To overcome this problem, change the target
library to a PDSE and save the module as a program object.

| � Saving DLL modules and their side files

| – Saving side files

| When modules are enabled for dynamic linking, a side file may be gener-
| ated to go along with the saved module. The side file contains IMPORT
| control statements which describe which function and data items to import
| from which dynamic link libraries in order to resolve references to symbols
| dynamically. The name of the saved module is also used as the member
| name for the side file whose ddname is specified in the STARTDialog
| binder API if the side file was allocated as a library or an OE directory. If
| the module is saved to an OpenEdition file (that is, if SYSLMOD is an
| OpenEdition file), the module name can be up to 255 bytes. However, if
| the target library for the side file is a PDS or a PDSE and the module name
| is greater than eight bytes, that name cannot be used for the side file
| because the maximum member name length for PDS/PDSE data sets is 8
| bytes. The side file is not saved in this case. To solve this problem, you
| need to either shorten the OpenEdition member name to 8 bytes or less, or
| change the side file DDNAME to represent an OpenEdition file.

202 DFSMS/MVS V1R4 Program Management

 Using the API

| – Saving DLLs

| While creating a definition side file, the binder uses the module name spec-
| ified in the NAME control statement or SAVEW API for the DLLNAME
| parameter of the IMPORT control statements. (See Chapter 6, “Binder
| Control Statement Reference” on page 69, IMPORT statement.) If this is a
| long name (greater than 8 bytes), the binder generates a unique 8-byte
| name for the DLL module if the module is saved to a PDS or a PDSE
| program library. Therefore, any applications using the side file (whose
| IMPORT control statements reference the long DLL name) will be unable to
| dynamically link to said DLL because the DLL name will have been modi-
| fied (shortened). Because of this, long names should not be used for DLLs
| unless the DLL module is saved to an OpenEdition file.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion. Module and aliases saved in designated
library.

04 83000403 The reusability of one or more sections was less than that
specified for the module.

04 83000410 An error was encountered while saving a workmod. The
module was saved, but may not be executable.

04 83000411 A module saved as a program object had the SCTR attribute
specified. The SCTR attribute was ignored.

04 83000420 A module saved as a load module contained contents not
compatible with that format. Some auxiliary information may
have been lost (for example, IDRU records may have been
truncated or discarded).

04 83000605 No entry name has been provided, either by the user or from
any object module processed. The entry point will default to
the first text byte.

04 83000606 One or more RMODE(24) sections have been included in an
RMODE(ANY) module.

| 04| 83000423| While attempting to process a side file, the binder can issue
| this code for two reasons: 1) You did not specify a side file
| ddname in the FILES parameter of the STARD call, or 2)
| Inside your side file, one of the IMPORT control statements
| refers to a DLLNAME that is longer than 8 bytes and resides
| in a PDS or PDSE. If the first reason does not apply to your
| case, refer to “Saving DLLs” in the processing notes of
| SAVEW for additional information on the second reason.

| 04| 83000604| There was a conflict in the AMODE/RMODE specification of
| the current module. This means that 1) The AMODE/RMODE
| combination is invalid, or one of the MODEs is invalid, or 2)
| OVLY was specified but either AMODE or RMODE is not (24).
| In the first case, the module is saved with the MODEs
| described in Chapter 2, “Creating Programs from Source
| Modules” on page 9, section “AMODE and RMODE
| validation.” In the second case, the module is saved with
| AMODE(24) and RMODE(24).

 Chapter 8. Using the Binder Application Programming Interface 203

 Using the API

Return
Code

Reason
Code

Explanation

| 04| 83000607| The saved program module contains 2-byte adcons which
| cannot be relocated.

08 83000400 The module has been saved as requested, but has been
marked “not-editable.”

08 83000401 One or more aliases could not be added to the target direc-
tory. Module saved as requested.

08 83000306 The module was saved successfully, but the save operation
summary could not be printed.

08 83000402 The entry name specified is not defined in the module being
saved. The entry point will default to the first text byte.

08 83000603 The AMODE or RMODE of one or more input ESD records is
incompatible with the AMODE or RMODE of the primary entry
point.

| 08| 83000425| A module name exceeds the maximum name length allowed
| for a member in a side file data set. When modules are
| enabled for dynamic linking, a side file may be generated to
| go along with the saved module. The name of the saved
| module is also used as the name for the side file whose
| ddname is specified in the STARTD binder API. If the module
| is saved to an OpenEdition file (that is, if SYSLMOD is an
| OpenEdition file), the module name can be up to 255 bytes.
| However, if the side file is saved to a PDS or a PDSE, that
| name cannot be used for the side file because the maximum
| member name length for such data sets is 8 bytes. Either
| shorten the OpenEdition member name to 8 bytes or less, or
| change the side file DDNAME to represent an OpenEdition
| file.

12 83000404 The module exceeded the limitations for load modules, and
could not be saved in the specified PDS library.

12 83000405 A permanent write error was encountered while attempting to
write the load module. The save operation terminated prema-
turely, and the module is unusable.

12 83000406 A permanent read error was encountered while attempting to
write the load module. The save operation terminated prema-
turely, and the module is unusable.

12 83000407 No valid member name has been provided. Request rejected.

12 83000408 The workmod has been marked not executable, and cannot
replace an executable version. Request rejected.

12 83000409 A member of the same name already exists in the target
library, but the REPLACE option was not specified. The
module was not saved.

12 83000412 The module contained no text and could not be saved.

12 83000413 One or more external references in the workmod were bound
to modules in the Link Pack Area. The module cannot be
saved.

| 12| 83000414| The workmod is null. No modules were successfully included
| from any source file. The workmod cannot be saved.

12 83000415 The module is empty (contains no nonempty sections) and will
not be saved unless LET=12.

204 DFSMS/MVS V1R4 Program Management

 Using the API

Return
Code

Reason
Code

Explanation

12 83000416 No ddname has been specified for the target library. Request
rejected.

12 83000417 The target data set is not a library. Request rejected.

12 83000418 The target data set is not a load library. Request rejected.

12 83000421 Text longer than 1 gigabyte in program object. Module not
saved.

12 83000422 The workmod contained data which cannot be saved in the
requested format. The module is not saved.

| 12| 83000424| A data management error was encountered while attempting
| to open, close, read, or write to a definition side file. Module
| not saved.

12 83000600 The target library could not be found. Request rejected.

12 83000601 The binder could not successfully close the output library.

12 83000602 The binder could not successfully open the output library.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
SAVEW parameter list in general purpose register 1.

Figure 54. SAVEW Parameter List

PARMLIST DS 0F
DC A(SAVEW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(DDNAME) Library ddname
DC A(MEMBER) Library member name
DC A(REPLACE+X'80000000') Replace option and end-of-list

indicator
SAVEW DC H(80) SAVEW function code

| DC| H(03)| Parameter list version
REPLACE DC CL1'Y' Replace option

"Y" = Yes
"N" = No

 SETL: Set Library
SETL specifies how a specified symbol will be handled during automatic library call.
SETL is not performed until the workmod is bound, regardless of where the call
appears in the dialog.

 Chapter 8. Using the Binder Application Programming Interface 205

 Using the API

The syntax of the SETL call is:

FUNC=SETL
specifies that you are requesting an automatic library call option for a symbol.
The particular library call option is set on the LIBOPT parameter.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

SYMBOL=symbol —RX-type address or register (2-12)
specifies the location of an 1024-byte varying character string which contains
the name of the symbol for which a library call option is being set.

LIBOPT={CALL |NOCALL|EXCLUDE}
requests whether the automatic library call option for a symbol be call, nocall,
or exclusive nocall. The possible arguments are as follows:

CALL
specifies a search of the library specified by CALLIB to resolve the refer-
ence. If the symbol cannot be resolved from this library, no attempt to
resolve it from the system autocall library is made.

CALL is the default.

NOCALL
specifies that no attempt is made to resolve the reference via autocall
during the current dialog.

EXCLUDE
specifies that no attempt is made to resolve the reference via autocall
during the current dialog or during any subsequent binder processing. This
can be overridden in subsequent processing runs by resetting the LIBOPT
value to CALL on a SETL call.

[symbol] IEWBIND FUNC=SETL
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,SYMBOL=symbol
[,LIBOPT={CALL |NOCALL|EXCLUDE}]

| [,CALLIB= ddname|,PATHNAME=pathname]

206 DFSMS/MVS V1R4 Program Management

 Using the API

The argument for LIBOPT may be abbreviated as C, N, or E.

CALLIB= ddname —RX-type address or register (2-12)
specifies the location of an 8-byte varying character string which contains the
ddname of the library to be used during autocall.
CALLIB is mutually exclusive with PATHNAME.
This keyword is only recognized if LIBOPT=CALL is coded.

| PATHNAME=pathname —RX-type address or register (2-12)
| specifies the location of a 1024-byte varying character string which contains the
| absolute or relative path name of an OpenEdition file. Note that PATHNAME
| must resolve to the file which is to be included.
| PATHNAME is mutually exclusive with CALLIB.
| This keyword is only recognized if LIBOPT=CALL is coded.

 Processing Notes
A SETL request is valid only when the processing intent is BIND.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

08 83000711 This request replaced a previous SETLIB request for the same
symbol.

12 83000101 The LIBOPT and CALLIB parameters are inconsistent. Either
LIBOPT=C and CALLIB was omitted, or LIBOPT=N or E and
CALLIB was present. Request rejected.

12 83000104 The SETL function is invalid against a workmod specified with
INTENT=ACCESS. Request rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the SETL
parameter list in general purpose register 1.

Figure 55. SETL Parameter List

PARMLIST DS 0F
DC A(SETL) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SYMBOL) Symbol/Section name
DC A(LIBOPT) Library option
DC A(DDNAME+X'80000000') Library ddname or pathname

SETL DC H(21) SETL function code
| DC| H(03)| Parameter list version number

 XLIBOPT DC CL1'C' Library option
"C" = Call
"N" = Nocall
"E" = Exclude

 Chapter 8. Using the Binder Application Programming Interface 207

 Using the API

 SETO: Set Option
SETO specifies options for processing and module attributes. Each option is set at
either the dialog or workmod level by providing a token in the call. The options that
can be specified are listed in “Setting Options With the Binder API” on page 137.

The syntax of the SETO call is:

FUNC=SETO
specifies that you are requesting specific processing options or module attri-
butes for a dialog or workmod.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

| Note: If VERSION=1 is specified for the SETO call, then PARMS cannot be
| specified as a macro keyword. The parameter list ends with the OPTVAL
| parameter (with the high-order bit set). This exception is for version 1 only.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request. WORKMOD and DIALOG are mutually exclusive. To set the
options at the workmod level, provide the WORKMOD token.

DIALOG=dialog —RX-type address or register (2-12)
specifies the location of an 8-byte area that contains the appropriate dialog
token. WORKMOD and DIALOG are mutually exclusive. To set the options at
the dialog level, provide the DIALOG token.

OPTION=option —RX-type address or register (2-12)
specifies the location of an 8-byte varying character string which contains an
option keyword. Except for CALLIB, all keywords can be truncated to three
characters. See “Setting Options With the Binder API” on page 137 for a com-
plete list of keywords.

[symbol] IEWBIND FUNC=SETO
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
[,WORKMOD=workmod]
[,DIALOG= dialog]
[,OPTION=option]
[,OPTVAL= optval]
[,PARMS=parms]

208 DFSMS/MVS V1R4 Program Management

 Using the API

OPTVAL=optval —RX-type address or register (2-12)
specifies the location of a varying character string which contains a value or a
list of values for the specified option.

PARMS=parms —RX-type address or register (2-12)
specifies the location of a varying character string which contains a list of
option specifications separated by commas.

 Processing Notes
Option values are coded as value or (value1,value2). A list of values is enclosed in
parentheses. A value containing special characters is enclosed in single quotes.
An imbedded single quote is coded as two consecutive single quotes. Special
characters include all EBCDIC characters other than upper and lower case alpha-
betics, numerics, national characters (@ # $), and the underscore. YES and NO
values may be abbreviated Y and N, respectively.

Options specified for a workmod override any corresponding options specified for
that dialog. Options specified at the dialog level override the corresponding system
defaults, and apply to all workmods within the dialog unless overridden. If
INTENT=ACCESS, these keywords are not allowed: ALIGN2, CALL, CALLIB, EDIT,
LET, MAP, OVLY, RES, TEST, XCAL, and XREF.

The options list specified in the PARMS= parameter is a character string identical
to the PARM= value specified in the JCL, with the following restrictions:

� The list is not enclosed with apostrophes or parentheses

� The negative option format (for example, NORENT) is not allowed

� Environmental options can not be specified on SETO. See the list of environ-
mental options in the OPTIONS parameter in “STARTD: Start Dialog” on
page 210

| If an option is specified using OPTION and OVAL and also appears in PARMS,
| then the value specified using OPTION and OVAL will override the value specified
| using PARMS.

You may specify an OpenEdition file as the CALLIB parameter value on a SETO
call.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

08 83000109 One or more options designated as environmental have been
specified on SETO. Option ignored.

12 83000100 Neither dialog token nor workmod token were specified.
Request rejected.

12 83000106 The option specified is invalid for a workmod specified with
INTENT=ACCESS. Request rejected.

12 83000107 Invalid option keyword specified. Request rejected.

 Chapter 8. Using the Binder Application Programming Interface 209

 Using the API

Return
Code

Reason
Code

Explanation

12 83000108 The option value is invalid for the specified keyword. Request
rejected.

12 83000113 An option you specified is valid only for the STARTD function.
The request is rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the SETO
parameter list in general purpose register 1.

Figure 56. SETO Parameter List

PARMLIST DS 0F
DC A(SETO) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(WORKMOD) Workmod token
DC A(OPTION) Option keyword
DC A(OPTVAL) Option value
DC A(PARMS+X'80000000') Options list and end-of-list indi-

cator
SETO DC H(20) SETO function code

| DC| H(03)| Parameter list version number

 STARTD: Start Dialog
STARTD begins a dialog with the binder, establishing the processing environment
and initializing the necessary control blocks. You specify the ddnames for the data
sets to be accessed, how errors are to be handled, and the global binder options.

STARTD returns a dialog token that is included with later calls for the same dialog.

The syntax of the STARTD call is:

FUNC=STARTD
specifies that a dialog is to be opened and initialized.

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. In subse-
| quent releases you can select either version 1 (the default), version 2, or 3. In
| DFSMS/MVS V1R4, version 3 is recommended in order to take advantage of
| the binder's latest capabilities.

[symbol] IEWBIND FUNC=STARTD
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,DIALOG=dialog
[,FILES= filelist]
[,EXITS=exitlist]
[,OPTIONS=optionlist]
[,PARMS=parms]

210 DFSMS/MVS V1R4 Program Management

 Using the API

| Note: If VERSION=1 is specified for the STARTD call, then PARMS cannot be
| specified as a macro keyword. The parameter list ends with the OPTLIST
| parameter (with the high-order bit set). This exception is for version 1 only.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

DIALOG=dialog —RX-type address or register (2-12)
specifies the location of an 8-byte area into which the binder places the dialog
token. This token must not be modified.

FILES=filelist —RX-type address or register (2-12)
specifies the address of a list containing one entry for each binder file for which
a ddname is provided. You code some or all of these file names in the list and
provide a ddname for each:

File name Description

CALLIB Automatic call library

MODLIB Target program library

PRINT Listing data set for messages produced by the LIST, MAP, and
XREF options

TERM Terminal data set for messages issued during binder proc-
essing

| SIDEFILE Data set to contain the side file of a DLL module.

The ddnames specified for PRINT and TERM may designate OpenEdition files.
| CALLIB and MODLIB may designate OpenEdition directories. SIDEFILE may
| designate an OpenEdition directory or an OpenEdition file.

EXITS=exitlist —RX-type address or register (2-12)
specifies the address of a list of user exit names. You can specify the following
user exits in this list:

MESSAGE exit Specifies an entry into the calling program that receives control
immediately prior to the binder issuing a message. See
“Message Exit” on page 219.

SAVE exit Specifies an entry into the calling program that receives control
if the binder is about to reject a primary name or an alias
name or after an attempt to save a member or alias name.
The save operation may have succeeded or failed. See “Save
Exit” on page 219.

Note: This exit is not invoked if the target is an OpenEdition
file.

INTFVAL exit The Interface Validation Exit (INTFVAL) allows your exit
routine to examine descriptive data for both caller and called at
each external reference. The exit can perform audits such as
examining parameter passing conventions, the number of
parameters, data types, and environments. It can accept the

 Chapter 8. Using the Binder Application Programming Interface 211

 Using the API

interface, rename the reference, or leave the interface unre-
solved. See “Interface Validation Exit” on page 221.

See “User Exits” on page 218 for additional information on writing user exit rou-
tines.

OPTIONS=optionlist —RX-type address or register (2-12)
specifies the location of an options list which contains the address of binder
options to be initialized during the STARTD call. Any option that can be set by
SETO can be initialized by STARTD. See “Setting Options With the Binder
API” on page 137 for a list of allowable options. Certain environmental options
can only be specified on STARTD:

CASE control case sensitivity
COMPAT specify downward compatibility
LINECT Maximum lines per page (The default value is 60).
MSGLEVEL Message selection by severity
PRINT Enable PRINT file
TERM Enable TERMINAL file
WKSPACE Restrict binder workspace
CALLERID Define user identification

PARMS=parms —RX-type address or register (2-12)
specifies the location of a varying character string which contains a list of
option specifications separated by commas. PARMS= overrides the equivalent
options in the FILES, EXITS, and OPTIONS list of the STARTD call. See the
PARMS parameter in “SETO: Set Option” on page 208 for more information.

Passing Lists to the Binder
Any list passed to the binder must conform to a standard format, consisting of a
fullword count of the number of entries followed by the entries. Each list entry con-
sists of an 8-byte name, a fullword containing the length of the value string, and a
31-bit pointer to the value string. The list specification is provided in Figure 57.

Figure 57. Binder List Structure

Field Name Field
Type

Offset Length Description

LIST_COUNT Integer 0 4 Number of 16-byte entries in
the list

LIST_ENTRY Structure 4,20,... 16 Defines one list entry

ENTRY_NAME Character 0 8 File, exit, or option name

ENTRY_LENGTH Integer 8 4 Length of the value string

ENTRY_ADDRESS Pointer 12 4 Address of the value string

Note: ENTRY_NAME, ENTRY_LENGTH, and ENTRY_ADDRESS are repeated for each
entry in the list up to the number specified in LIST_COUNT.

212 DFSMS/MVS V1R4 Program Management

 Using the API

You code the data pointed to by ENTRY_ADDRESS according to the list type:

 File List
Code one entry for each file name:

ENTRY_NAME: 'CALLIB ', 'MODLIB ', and so on. See list of file names in
FILES parameter description in “STARTD: Start Dialog” on
page 210.

ENTRY_LENGTH: The byte length of the corresponding ddname.

ENTRY_ADDRESS: The address of the string containing the ddname.

| Each file name specified in the FILES parameter of the STARTDialog API must
| correspond to a ddname in your JCL. Your data sets may be new or pre-allocated.
| Although you can use any valid ddname for a given FILE name, the following
| ddnames are recommended. Their allocation requirements are listed below:

| FILE name Recommended ddname

| CALLIB SYSLIB

| MODLIB SYSLMOD

| PRINT SYSPRINT

| TERM SYSTERM

| SIDEFILE SYSDEFSD

| The SYSLIB data set (the CALLIB file): This DD statement describes the auto-
| matic call library, which must reside on a direct access storage device. This is a
| required data set if you wish to enable autocall processing while you bind your
| modules through the use of the BINDWorkmod API call (See the CALLIB parameter
| in the BINDW API).

| The data set must be a library and the DD statement must not specify a member
| name. You can concatenate any combination of object module libraries and
| program libraries for the call library. If object module libraries are used, the call
| library can also contain any control statements other than INCLUDE, LIBRARY, and
| NAME. If this DD statement specifies a PATH parameter, it must specify a direc-
| tory.

| Figure 58 shows the the SYSLIB data set attributes, which vary depending on the
| input data type.

| Figure 58. SYSLIB Data Set DCB Parameters

| LRECL| BLKSIZE| RECFM

| 80| 80| F, FS, OBJ, XOBJ, control statements, and GOFF

| 80| 32720 (maximum size)| FB, FBS OBJ, XOBJ, control statements, and
| GOFF

| 84+| 32720 (maximum size)| V, VB, GOFF object modules

| n/a| 32720 (maximum size)| U, load modules

| n/a| 4096| U, program objects

 Chapter 8. Using the Binder Application Programming Interface 213

 Using the API

| The SYSLMOD data set (the MODLIB file): It is the target library for your
| SAVEWorkmod API calls when ACCESS=BIND on your CREATEWorkmod API
| call. That is, SYSLMOD is the library which is to contain your bound modules. As
| such, it must be a partitioned data set, a PDSE, or an OpenEdition file.

| Although a member name can be specified on the SYSLMOD DD statement, it is
| used only if a name is not specified on the SAVEWorkmod SNAME parameter (See
| the SAVEW API in this Chapter). Therefore, a member name should not be speci-
| fied if you expect to save more that one member in a binder dialog. See
| Chapter 3, “Using the Binder Batch Interface” on page 29, section “SYSLMOD DD
| Statement” on page 34, for additional information on allocation requirements for
| SYSLMOD.

| The SYSPRINT data set (the print file): The binder prints diagnostic messages
| to this data set. The binder uses a logical record length of 121 and a record format
| of FBA and allows the system to determine an appropriate block size.

| Figure 59 shows the data set requirements for SYSPRINT.

| The SYSTERM data set (the TERM file): SYSTERM defines a data set for error
| and warning messages that supplements the SYSPRINT data set. It is always
| optional. SYSTERM output consists of messages that are written to both the
| SYSTERM and SYSPRINT data sets, and it is used mainly for diagnostic purposes.

| Figure 60 shows the data set requirements for SYSTERM.

| The SYSDEFSD data set (the SIDEFILE file): When a module (call it module A)
| is enabled for dynamic linking through the DYNAM(DLL) binder option, a comple-
| mentary file may be generated to go along with it. Module A becomes a DLL, and
| the complementary file becomes its “side file.” The side file is saved in the data
| set represented by the SYSDEFSD ddname. The side file contains the external
| symbols of DLL A, known as “exports.” These external symbols can be referenced
| by other DLLs and are known as “imports” to these modules. If module A does not
| export any symbols, no side file is generated for it. This applies to any DLL.

| SYSDEFSD may be a sequential data set, a PDS, a PDSE, or an OpenEdition file.
| If it is a sequential data set, the generated side files for multiple DLLs are
| appended one after another, provided that the DISP=MOD parameter is supplied in
| the SYSDEFSD JCL allocation. If SYSDEFSD is a PDS or a PDSE, the side file is
| saved as a member with the same name as the DLL to which it belongs. Refer to
| the processing notes of the SAVEW API for additional information.

| Figure 59. SYSPRINT DCB Parameters

| LRECL| BLKSIZE| RECFM

| 121| 121| FA

| 121| 32670 (maximum size)| FBA

| 125| | VA or VBA

| Figure 60. SYSTERM DCB Parameters

| LRECL| BLKSIZE| RECFM

| 80| 32720 (maximum size)| FB

214 DFSMS/MVS V1R4 Program Management

 Using the API

| The SYSDEFSD DD statement is optional. However, when the ddname is absent,
| the binder issues a warning message if at bind time a program generates export
| records and the DYNAM(DLL) binder option has been specified.

 Exit List
ENTRY_NAME: 'MESSAGE ', 'INTFVAL ', or 'SAVE '.

ENTRY_LENGTH: 12.

ENTRY_ADDRESS: The location of a three-word area containing three
addresses. See the message list addresses in “Message
Exit” on page 219, the save list addresses in “Save Exit” on
page 219 and the interface validation list addresses in “Inter-
face Validation Exit” on page 221 for the contents of the
three addresses.

 Option List
ENTRY_NAME: The option keyword (for example, 'LIST ', 'MAP ',

'CALLERID'). Option keywords cannot be truncated and neg-
ative options cannot be specified (NOLIST, NOPRINT, and
so on). If INTENT=ACCESS, these keywords are not
allowed: ALIGN2, CALL, CALLIB, EDIT, LET, MAP, OVLY,
RES, TEST, XCAL, and XREF.

ENTRY_LENGTH: The length of the option value as a character string; it may
be zero.

ENTRY_ADDRESS: The address of the character string encoded with the option's
value. The address may be zero. The maximum length of
the option value string is 256 bytes. Use commas and
parentheses if a sublist is required.

Return and Reason Codes
The binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

04 83000112 The binder encountered an unsupported option in the
OPTIONS file. The option is ignored.

04 83000204 The binder was unable to open the trace data set during
initialization. Processing continues without trace.

08 83000108 An option value is missing or contains an invalid setting.

08 83000111 An OPTIONS option was encountered in the options file. The
option is ignored.

08 83000200 The binder was unable to open the PRINT data set during
initialization. Processing continues without PRINT.

08 83000201 One or more invalid options were passed on STARTD. Those
options were not set, but processing continues.

| 12| 83000203| The binder was unable to open the TERM data set during
| initialization. Processing stops.

 Chapter 8. Using the Binder Application Programming Interface 215

 Using the API

Return
Code

Reason
Code

Explanation

08 83000205 The current time was not available from the operating system.
Time and date information in printed listings and IDR records
will be incorrect.

| 08| 83000206| The binder was unable to open the SYSTERM data set
| because its DDNAME was not specified in the FILES param-
| eter of STARTD. Processing continues without SYSTERM.

| 12| 83000207| The binder was unable to open the SYSPRINT data set
| because its DDNAME was not specified in the FILES param-
| eter of STARTD. Processing continues without SYSPRINT.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
STARTD parameter list in general purpose register 1.

Figure 61. STARTD Parameter List

PARMLIST DS 0F
DC A(STARTD) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(FILELIST) File list
DC A(EXITLIST) Exit list
DC A(OPTLIST) Option list
DC A(PARMSTR+X'80000000') Parameters and end-of-list indi-

cator
STARTD DC H(01) STARTD function code

| DC| H(03)| Parameter list version number

 STARTS: Start Segment
STARTS designates the beginning of an overlay segment when creating an overlay
format program module. The OVLY option must have been specified for this
workmod. OVLY-format modules may only be saved as load modules or PM-1
format program objects.

The syntax of the STARTS call is:

FUNC=STARTS
specifies the beginning of an overlay segment within an overlay format
program.

[symbol] IEWBIND FUNC=STARTS
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD=workmod
,ORIGIN=origin
[,REGION={YES|NO }]

216 DFSMS/MVS V1R4 Program Management

 Using the API

| VERSION=1|2|3
| specifies the version of the parameter list to be used. In DFSMS/MVS Version
| 1 Releases 1 and 2, version 1 parameter lists are used exclusively. This
| keyword only supports version 1.

RETCODE=retcode —RX-type address or register (2-12)
specifies the location of a fullword integer which is to receive the return code
returned by the binder.

RSNCODE=rsncode —RX-type address or register (2-12)
specifies the location of a 4-byte hexadecimal string which is to receive the
reason code returned by the binder.

WORKMOD=workmod —RX-type address or register (2-12)
specifies the location of an 8-byte area which contains the workmod token for
this request.

ORIGIN=origin —RX-type address or register (2-12)
specifies the location of an 8-byte varying character string which contains the
symbol that designates the segment origin. This symbol is independent of
other external symbols in the workmod and has no relation to external names
in the ESD.

REGION={YES|NO}
specifies whether or not the segment is to begin a new region within the
program module. This is an optional keyword. The argument can be abbrevi-
ated as Y or N. NO is the default.

 Processing Notes
A STARTS request is valid only when the processing intent is BIND.

See Appendix E, “Designing and Specifying Overlay Programs” on page 305 for
more information on overlay format programs.

Return and Reason Codes
The common binder API reason codes are shown in Figure 31 on page 143.

Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

12 83000104 The STARTS function is not valid against a workmod specified
for INTENT=ACCESS. Request rejected.

12 83000712 The maximum of 4 regions will be exceeded. Request
rejected.

12 83000713 The maximum of 255 segments will be exceeded. Request
rejected.

 Parameter List
If your program does not use the IEWBIND macro, place the address of the
STARTS parameter list in general purpose register 1.

 Chapter 8. Using the Binder Application Programming Interface 217

 Using the API

Figure 62. STARTS Parameter List

PARMLIST DS 0F
DC A(STARTS) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(ORIGIN) Segment origin symbol
DC A(REGION+X'80000000') Region option and end-of-list

indicator
STARTS DC H(35) STARTS function code

| DC| H(03)| Parameter list version
REGION DC CL1 Region option

 "Y"=Yes, "N"=No

 User Exits
User exits identify points in binder processing when the calling program regains
control. The binder passes the user exit routine a data buffer. The exit routine can
examine or modify the data, return it to the binder, and set a return code.

The binder provides user exit points for:

� The message exit
� The save exit
� The interface validation exit.

| You can define the user exits in the exit list parameter on STARTD, or you specify
| them in the EXITS option of the JCL PARM string.

 Execution Environment
The execution environment of a user exit routine is:

� Enabled for I/O and external interrupts
� Holds no locks
� In task control block (TCB) mode
� With PSW key equal to the key of the issuer of IEWBIND
� In primary address space mode
� In 31-bit addressing mode
� In same PSW state as when IEWBIND was invoked
� With no FRR's on the current FRR stack.

Registers at Entry to the User Exit Routine
A user exit routine is called using MVS linkage conventions:

� Register 1 contains the address of the parameter list.
� Register 13 contains the address of an 18-word register save area.
� Register 14 contains the return address to the binder.
� Register 15 contains the address of the exit routine's entry point.

218 DFSMS/MVS V1R4 Program Management

 Using the API

 Message Exit
The binder passes control to your message user exit routine just prior to writing a
message to the print data set (typically SYSPRINT). The message is stored in a
buffer and passed to your routine. The exit routine can either prevent or allow the
message to print.

When specifying this exit on STARTD, you provide the following information by
means of the EXITS keyword:

� The entry point address of the message exit routine.

� Optional user data which is passed directly to the exit without being processed
by the binder. This is typically used as an address to dynamic storage when
the binder is invoked by a reentrant program, but can be a counter or other
data.

� An address of a fullword containing an error severity level below which the
binder does not call your exit routine. For example, if you code 8 in this word,
the binder does not call your exit routine for normal output, informational mes-
sages, or warning messages.

The binder passes a parameter list to the exit routine. Register one contains the
address of a list of addresses to the following data:

� The user data specified in the second word of the exit specification

| � A pointer to a varying-length character buffer which contains a message. The
| length of the buffer is indicated in the first two bytes, which are not included in
| this length. The length may include trailing blanks.

� A halfword count of the number of lines in the buffer

� A halfword count of the number of characters per line in the buffer

� A 4-character message number extracted from the message text in the buffer

� A halfword severity code

� A fullword reason code to be set by the exit routine

� A fullword return code to be set by the exit routine.

The exit routine can examine the messages but should not modify them. Before
returning to the binder, your exit routine should set a return code for the binder to
control its next action as follows:

0 Continue processing as if the exit routine had not been called.
4 Suppress printing of the message.

 Save Exit
The binder passes control to your save exit routine just prior to rejecting a primary
member name or an alias name or after an attempt to save a primary member
name or an alias name. The save operation may have succeeded or failed. The
binder passes your routine information about the disposition of the name and, in
certain situations, you can request that the save be retried.

Note: This exit is not invoked if the target is an OpenEdition file.

When specifying this exit on STARTD, you provide the following information by
means of the EXITS keyword:

 Chapter 8. Using the Binder Application Programming Interface 219

 Using the API

� The entry point address of the exit routine.
� Optional user data which is passed directly to the exit without being processed

by the binder. This is typically used as an address to dynamic storage when
the binder is invoked by a reentrant program, but can be a counter or other
data.

� A third fullword which currently is not used.

The binder passes a parameter list to the exit routine. Register one contains the
address of a list of addresses to the following data:

� The user data specified in the second word of the exit specification.

� A fullword reason code (see below)

� A one-character argument identifying the type of name:
P for primary member name and A for alias name.

� A two-byte field specifying the length of the name, followed by the name

� A fullword return code to be set by the exit.

The reason codes passed to the exit by the binder are as follows:

Reason Code Description
00000000 Normal completion.
83008000 No valid member name.
83008001 Duplicate member name.
83008010 Not-executable module replacing executable module.
83008050 Alias name is too long (PDS only).
83008051 Duplicate alias name.
83008052 No ESD for alias target.
83008060 Insufficient virtual storage for STOW (PDS only).
83008070 I/O error in directory.
83008071 Out of space in directory (PDS only).
83008078 Member or alias name not processed (PDSE only).
83008079 Miscellaneous error condition.

The save attempt can be retried only if the reason code is less than 83008050.

Your exit routine should examine the name and reason code. It can either retry the
save, retry the save under a new name, or do nothing. Your routine should change
the name in the parameter list if a save under a new name is to be requested.

Your exit routine must set a return code for the binder to control its next action as
follows:

0 Continue processing as if the exit routine had not been called.

4 Retry the save with a new name. Your exit routine updates the fourth param-
eter in the parameter list with the new name. Valid for reason codes
83008000, 83008001, and 83008010.

8 Retry the original save and force a replacement. Valid for reason codes
83008001 and 83008010.

The binder performs the retry operation if requested. Your exit routine may be
called repeatedly until the save is successful. There is no limit to the number of
retry attempts. Your exit routine must return a zero return code eventually or a
never-ending loop could occur.

220 DFSMS/MVS V1R4 Program Management

 Using the API

Interface Validation Exit
The Interface Validation Exit (INTFVAL) allows your exit routine to examine descrip-
tive data for both caller and called at each external reference. The exit can perform
audits, such as examining parameter passing conventions, the number of parame-
ters, data types, and environments. It can accept the interface, rename the refer-
ence, or leave the interface unresolved.

When specifying this exit on STARTD, you provide the following information by
means of the EXITS keyword:

� The entry point address of the exit routine.
� Optional user data which is passed directly to the exit without being processed

by the binder. This is typically used as an address to dynamic storage when
the binder is invoked by a reentrant program, but can be a counter or other
data.

� A third fullword which currently is not used.

The binder passes control to your exit routine at the completion of input processing,
including autocall. This is before binding the module. If specified, the exit routine
is invoked at three different points in binder processing, indicated by the function
code passed to the exit:

'S' (Start) - Allows the exit routine to set up its environment and return a list of
requested IDRs (product identifiers) to the binder.

'V' (Validate) - Allows the exit routine to validate all of the resolved and unresolved
references from one section (CSECT) in the module to external labels in other
sections.

'E' (End) - Invoked immediately prior to binding. Permits cleanup by the exit
routine.

For each module being bound, Start will be called once, Validate will be called zero
or more times, and End will be called once.

At the completion of autocall, the exit will be taken once for the Start function and
once for each section in the module containing one or more unchecked external
references. An external reference is unchecked if the signature in its ER record is
either null (binary zeros) or does not match the signature in the LD.

An anchor word will be passed to the exit to provide for persistent storage between
invocations. If the binder is invoked as a batch program, the anchor will be allo-
cated and set to zero by the binder on invocation of the Start function; otherwise,
the value passed to the binder on the STARTD exit specification will be passed
through to the exit. If the exit routine provides its own dynamic storage, that
address can be stored in the anchor word for addressability by subsequent invoca-
tions. No facilities will be available for trapping errors: If the exit fails, the binder
fails. A message can be returned by the exit routine, however, to be printed by the
binder.

The binder passes a parameter list to the exit routine. Register one contains the
address of a list of addresses to the following data:

� Function Code ("S", "V" or "E"). A 1-byte function code indicating Start, Vali-
date or End, respectively.

� Anchor Word. A 4-byte pointer variable for use by the exit.

 Chapter 8. Using the Binder Application Programming Interface 221

 Using the API

� Exit control. The character string passed on the exit specification. The char-
acter string is immediately preceded by a halfword length field.

� Section name. ('V' only) A varying string containing the name of the section
being validated.

� Section vaddr ('V' only). A 4-byte pointer to the beginning of the first text
element in the section being validated. This may not be useful in a multiclass
module, since there is no designated “primary” class. This field is reserved for
future use.

� Section IDRL. This parameter has a dual use, depending on the Function
Code. On the Start (“S”) call, the parameter is initialized to zero by the binder
and optionally reset by the exit routine. On the Validate (“V”) call, the binder
sets the parameter to point to the IDR entry, if one is present, for the current
section or to zero.

– ('S') A 4-byte pointer, initialized to zero by the binder and optionally reset to
the address of an IDR list by the exit routine. The list, if specified, indicates
those product identifiers of interest to the exit. If the list is not returned by
the exit, the exit will be invoked for all sections. See below for a discussion
of the IDR selection list.

– ('V') A 4-byte pointer, set by the binder, to the IDR entry for the section in
process. The IDR data is preceded by a halfword length field.

� Reference List ('V' only) A 4-byte pointer to a list of unchecked references.
See below for a discussion of the reference list.

� Return code. A fullword return code indicating the overall status of the exit. It
will be initialized to zero on invocation of the exit.

Return codes from the exit routine are:

0 No further processing required of this section. The action code for all ref-
erences is zero.

4 Further processing required by the binder, as indicated in the returned
action codes.

12 Severe error. Make no more calls to the exit and do not save the module
(unless LET=12).

16 Terminate binder processing immediately

� Returned message. A 4-byte pointer to a varying string allocated by the exit
and containing a message to be printed by the binder. The returned message
must not be longer than 1000 bytes. The binder will prefix the returned
message with its own message number.

The message will be initialized to the null string so that the exit routine need
not take any action unless a message is to be issued.

The IDR selection list is built by the exit routine on the "Start" call and its address
returned to the binder. The purpose of the list is to improve performance by limiting
the number of exit invocations. If a section to be validated was compiled by a
language product not on the list, or if no IDR information is available for that
section, then the exit will not be taken. Each entry in the list consists of:

� A 4-byte address of another entry (zero indicates last entry)

� A 2-byte length containing the number of IDR bytes to be compared (1-14)

222 DFSMS/MVS V1R4 Program Management

 Using the API

� A character string containing a substring of the product id, version and modifi-
cation level. The string can contain a maximum of 14 bytes in the format
ppppppppppvvmm.

The reference list is a linked list containing one entry for each unchecked ER in the
section. References marked NOCALL or NEVERCALL will not be included in the
list. The last entry in the list contains zero in the link field. A reference entry is 64
bytes in length and consists of the following fields:

OFF TYPE LEN NAME DESCRIPTION NOTES

--- -------- --- -------------- ---------------------------- -----

(ð) Address 4 REFL_NEXT Address of next list entry 3

(4) Address 4 REFL_T_SYMBOL Address of referenced symbol 2

(8) Address 4 REFL_T_SECTION Address of target section name 2,8

(C) Address 4 REFL_T_ELEMENT Address of target element 1,8

(1ð) Address 4 REFL_T_DESCR Address of target descriptors 1,8

(14) Address 4 REFL_T_IDR Address of target IDR 1,5,8

(18) Bit 4 REFL_T_ENVIR Target environment 1,6,8

(1C) Character 8 REFL_T_SIGN Target signature 8

(24) Address 4 REFL_T_ADCONS Adcon list anchor 1

(28) Address 4 REFL_C_DESCR Address of caller descriptors 1

(2C) Bit 4 REFL_C_ENVIR Caller's environment 1,6

(3ð) Character 8 REFL_X_SIGN Exit signature 4,9

(38) Address 4 REFL_X_SYMBOL New symbol (Char(\) varying) 4,7,9

(3C) Unsigned 2 REFL_X_ACTION Action code 4,9

(3E) Unsigned 2 Reserved 1

Notes:

1 Must be zero.

2 Points to varying character string. String must begin with a

halfword length field containing current length, excluding length

 field.

3 Last entry in list set to zero.

4 Output field. Set by exit routine.

5 IDR data is returned in the following format:

 ð CHAR 1ð Processor Identification

 1ð CHAR 2 Processor Version

12 CHAR 2 Processor Modification Level

14 CHAR 7 Date Compiled or Assembled (yyyyddd)

The above 21-byte structure is preceded by a halfword length.

The length may contain zero or any multiple of 21, allowing

for multiple IDRs.

6 Environmental bit settings are not yet defined.

7 The exit routine must allocate and initialize a varying length

character string, consisting of a halfword length field,

containing the length of the symbol, immediately followed

by the symbol itself. The address of this varying string

must be stored in the REFL_X_SYMBOL field in the reference

 list.

8 Target fields will contain binary zeros for unresolved references

9 Output fields will be initialized to binary zeros on invocation

of the exit routine.

| 1ð Referenced symbol or section is in the following format:

| ð BIN 2 Length of name field.

| 2 CHAR \ Name.

 Chapter 8. Using the Binder Application Programming Interface 223

 Using the API

Action codes set for each reference include the following:

0 No special processing required for this reference, such as changing the bind
status flags, renaming the reference or storing signatures.

1 Validation successful. Store the exit signature in both LD and ER records.

2 Validation successful. Store glue code address in all referring adcons and
store the exit signature in both LD and ER records.

3 Accept unresolved reference. Do not store the exit signature in the ER record.
Reference will be treated as a weak reference and will not affect the return
code from the binder.

4 Retry. New symbol has been provided for reference. Do not store signatures
at this time. Reprocess autocall, if necessary, and re-validate.

5 Validation failed. Mark reference unresolved and do not store signatures at
this time. The return code from the binder will reflect that there was at least
one unresolved reference.

Post Processing: On return from the exit, the binder will take the action described
by the action code for each external reference. If the action code is 1 or 2, the
signature returned by the exit will be stored, if nonzero, in both ER and LD, so that
the interface will not be re-examined on a subsequent invocation. If the exit elects
to rename a reference, the symbol will be changed FOR THAT REFERENCE
ONLY. If the renamed reference cannot be resolved from labels already present in
the module, then another autocall pass will be required.

The exit routine should always return some kind of signature to the binder, if the
interface is valid, so that the same reference does not get revalidated on subse-
quent passes. If the input signature is not null (binary zeros) return it to the binder;
otherwise, return any 8-byte string (for example, date/time), which will then be
saved in the LD and ER records. The signature can consist of any characters.
The binder map, if requested, will indicate those sections which were included as a
result of one or more renamed references. The flag position in the map, which
normally contains an asterisk for autocalled sections, will be reset to "R". There will
be no indication as to the number and location of such renamed references nor
their original names.

Default Exit Routine: In the absence of an interface exit specification, the binder
will default the exit processing. During default validation, the binder will examine
each resolved ER - LD pair, checking the following:

� Compare the text type expected (ER) with that of the target (LD). Fifteen text
types are supported by the binder, and can be passed in the ER and LD
records via the binder API or the new object module (GOFF):

ð - unspecified

1 - data

2 - instructions

3-15 - for translator use

If the text type for either caller or called is unspecified, or if the two text types
are equal, then the interface is considered valid.

� Compare the signature fields. If either is unspecified (binary zeroes) or if they
match, the interface will be considered valid.

224 DFSMS/MVS V1R4 Program Management

 Using the API

If either result is not valid, a warning message will be issued by the binder and the
return code set to 4. The reference remains resolved, however.

Programming Example for the Binder API
The sample program in Figure 63 on page 228 is intended to show how the binder
application programming interface could be used by an application written in

| System/370* or System/390* assembler language. Although the task is arbitrary,
| the example shows the sequence in which the APIs can be invoked in order to
| accomplish the task.

The program invokes the binder to include an arbitrary module (IFG0198N) from a
library (ddname=LPALIB), scans through its ESD entries one section at a time, and
writes the ESD entries to an output file (ddname=MYDDN). The program specifies
all three types of lists on the STARTD call to show how they might be used. It also
demonstrates the use of the SETO call to set an option during the dialog.

The program is divided into numbered sections for ease of annotation. Additional
commentary on each of the numbered sections follows:

Section
Number Description

1 This is standard MVS entry point linkage. Register 12 is saved in the
message exit specification so that the exit routine can obtain address-
ability to its own code and data.

The LA instruction clears the high-order byte (or bit) of register 12.
This was done because the message user exit routine is entered in
31-bit addressing mode and uses register 12 as its base register. If
the main program is entered in 24-bit addressing mode, the high-order
byte of register 12 will contain extraneous bits unless it is cleared.

2 This logic opens the output file which is unrelated to any binder func-
tion.

3 These specifications of the IEWBUFF macro obtain storage for the
ESD and NAMES buffers, then initialize them. Mapping DSECTs for
the buffers are provided at the end of the program.

4 The STARTD call establishes a dialog with the binder. It is always
required and sets the dialog token for use in subsequent binder calls.
The dialog token should be initialized to a doubleword of zero before
its first usage.

The example uses all three list parameters on the STARTD call:

� FILES permits us to assign a ddname to the binder's print file.
Note that when using the binder API, any required binder files
(those whose ddnames do not appear on binder control state-
ments or as macro parameters) must have ddnames assigned in
this way.

� EXITS permits us to specify a message exit routine which
receives control, in this case, if the message severity is greater
than 0. The exit routine appears at the end of this program.

 Chapter 8. Using the Binder Application Programming Interface 225

 Using the API

� OPTIONS allow us to specify one or more options which will apply
throughout the binder dialog. In this example, option TERM is set
to “Y.”

5 This logic creates a binder workmod with INTENT=ACCESS. The
dialog token, DTOKEN, is a required input parameter. The workmod
token, WTOKEN, is set by the binder for use on subsequent calls.
The workmod token should be initialized to a doubleword of zero prior
to the CREATEW call.

6 SETO is used to set the LIST option to “ALL.” Since the workmod
token is provided on the macro, LIST is set at the workmod level and
is valid only until the workmod is reset.

7 This step includes member IFG0198N from library LPALIB, using
ddname and member name to identify the module to be included.

8 The GETN call retrieves from the workmod the names of all sections
in module IFG0198N. Names are returned in the names buffer,
IEWBBNL, and COUNTN is set to the number of names returned.
TCOUNT is set to the total number of names in the module, regard-
less of the size of the buffer. For this example, the two counts should
be the same.

A return code of 4 indicates that all names have been returned in the
buffer and that additional GETN calls are unnecessary.

9 For each name returned in the names buffer, the program issues one
GETD call to obtain the ESD data. If a large module had been proc-
essed, both the GETN and GETD calls would have been processed in
a loop to accommodate the possibility that there are more names or
ESD records than could be obtained in a single buffer. This example,
however, assumes that all names or ESD entries can be returned in a
single GETD call.

Assuming that any ESD entries were returned for the designated
section, the program scans through the buffer and writes each ESD
record to the output file designated by ddname MYDDN. It is pos-
sible, however, that the item does not exist and that the named
section must be bypassed.

| 10 DELETEW removes the workmod from binder storage.
| PROTECT=YES, the default, merely indicates that the delete should
| fail if the workmod has been altered by the dialog. Since
| INTENT=ACCESS, no alteration was possible, and PROTECT=YES is
| ineffective.

| 11 ENDD ends the dialog between the program and the binder, releasing
| any remaining resources, closing all files, and resetting the dialog
| token to the null value.

| 12 A call to IEWBUFF (FUNC=FREEBUF) frees the NAME and ESD
| buffers previously obtained by IEWBUFF.

| 13 Once the intended task is completed, the program closes the output
| file and releases its DCB storage. This action is unrelated to any
| binder activity.

226 DFSMS/MVS V1R4 Program Management

 Using the API

| 14 This logic represents standard MVS return linkage to the operating
| system.

| Note that an error in the program may cause control to be passed to
| the ERREXIT label, at which point clean-up processing takes place.
| Three clean-up items are accomplished here:

| 1. If the NAME and ESD buffers were obtained previously through
| IEWBUFF, they are released here. IEWBUFF (FUNC=FREEBUF)
| is invoked to accomplish this.

| 2. If the binder dialog is outstanding (that is, if the STARTDialog API
| was invoked previously), then it is ended here. Note that the
| workmod is deleted when the dialog is ended.

| 3. If the output DCB is open, it is closed and its storage is released.

| 15 Many macro parameters require variable length character strings. To
| the binder, a variable length string consists of a halfword length fol-
| lowed by a byte string of the designated length. The halfword length
| value does not include the two bytes for the length field itself.

| This section illustrates the definition of some of those variable length
| character string constants.

| 16 The STARTD function call specified all three types of lists: FILES,
| EXITS and OPTIONS. Each of these list parameters is defined here.
| Although each list contains only a single entry, additional entries could
| have been specified by incrementing the fullword count and adding
| another three-item specification at the end of the list.

| 17 The DCB for the output file is defined for this program only. The file
| is not shared or used in any way by the binder.

| 18 This use of the IEWBUFF macro provides DSECT maps for both the
| ESD and names buffers. Registers 6 and 7 are dedicated as base
| registers for the ESD buffer header and entries, respectively. Simi-
| larly, registers 8 and 9 are dedicated to the names buffer.

| Note that you must code the IEWBUFF macro within a CSECT. Also
| note that the VERSION parameter in IEWBUFF must match the value
| of the VERSION parameter in the GETN and GETD binder APIs.

| 19 The message exit routine receives control, in this example, any time a
| message is issued by the binder with a severity of four or greater.
| This routine receives control in the binder's AMODE (31). It must
| provide capping code to switch to AMODE(24), if necessary, then
| back to the binder's AMODE before returning. Refer to OS/390 MVS
| Assembler Services Guide for a discussion of capping.

| The exit routine is copying the message from the binder's message
| buffer to the output file. It could have prevented the binder from
| issuing the message by returning a 4 in register 15.

 Chapter 8. Using the Binder Application Programming Interface 227

 Using the API

| \\

| \ \

| \ SAMPLE BINDER PROGRAM \

| \ \

| \ Example application which includes a module and prints its ESD \

| \ records using the Binder call interface functions INCLUDE, GETN \

| \ and GETE. \

| \ \

| \\

| \\

| \ PROGRAM INITIALIZATION \

| \\

| \\

| \ 1. Entry point linkage \

| \\\\\ \\\\\

| BAGETE CSECT

| PRINT GEN

| Rð EQU ð

| R1 EQU 1

| R2 EQU 2

| R3 EQU 3

| R4 EQU 4

| R5 EQU 5

| R6 EQU 6

| R7 EQU 7

| R8 EQU 8

| R9 EQU 9

| R1ð EQU 1ð

| R11 EQU 11

| R12 EQU 12

| R13 EQU 13

| R14 EQU 14

| R15 EQU 15

| SAVE (14,12)

| BASR R12,ð Get 31-bit base even in 24-bit mode

| USING \,R12

| ST R12,MESSAGE+4 Save program base for message exit

| LA R15,SAVE

| ST R13,SAVE+4

| ST R15,8(,13)

| LR R13,R15

| SPACE

| MVC FREEBFR,ZERO No buffers to FREEBUF yet

| MVC CLSDCB,ZERO No DCB to close yet

| MVC ENDDLG,ZERO No Dialog to end yet

| \\

| \ 2. Open output data set \

| \\\\\ \\\\\

| OPEN (MYDCB,OUTPUT) Open output data set

| LTR R15,R15 Successful?

| BNZ ERREXIT Exit if not

| MVC CLSDCB,FOUR We must CLOSE our DCB on exit

| SPACE

| Figure 63 (Part 1 of 8). Sample Binder Application Programming Interface Program

228 DFSMS/MVS V1R4 Program Management

 Using the API

| \\

| \ 3. Obtain and initialize binder buffers \

| \\\\\ \\\\\

| IEWBUFF FUNC=GETBUF,TYPE=ESD

| IEWBUFF FUNC=GETBUF,TYPE=NAME

| IEWBUFF FUNC=INITBUF,TYPE=ESD

| IEWBUFF FUNC=INITBUF,TYPE=NAME

| MVC FREEBFR,FOUR We must FREEBUF our buffers on exit

| SPACE

| \\

| \ 4. Start Dialog, specifying lists \

| \\\\\ \\\\\

| MVC DTOKEN,DZERO Clear dialog token

| IEWBIND FUNC=STARTD, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| DIALOG=DTOKEN, C

| FILES=FILELIST, C

| EXITS=EXITLIST, C

| OPTIONS=OPTLIST, C

| VERSION=3

| CLC RSNCODE,ZERO Check the reason code

| BNE ERREXIT Exit if not zero

| MVC ENDDLG,FOUR We must ENDDIALOG on exit

| EJECT

| \\

| \ 5. Create a Workmod with Intent ACCESS \

| \\\\\ \\\\\

| MVC WKTOKEN,DZERO Clear workmod token

| IEWBIND FUNC=CREATEW, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| WORKMOD=WKTOKEN, C

| DIALOG=DTOKEN, C

| INTENT=ACCESS, C

| VERSION=3

| CLC RSNCODE,ZERO Check the reason code

| BNE ERREXIT Exit if not zero

| EJECT

| \\

| \ 6. Set the list option to ALL \

| \\\\\ \\\\\

| IEWBIND FUNC=SETO, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| WORKMOD=WKTOKEN, C

| OPTION=LIST, C

| OPTVAL=ALL, C

| VERSION=3

| CLC RSNCODE,ZERO Check the reason code

| BNE ERREXIT Exit if not zero

| EJECT

| Figure 63 (Part 2 of 8). Sample Binder Application Programming Interface Program

 Chapter 8. Using the Binder Application Programming Interface 229

 Using the API

| \\

| \ MAIN PROGRAM \

| \\

| \\

| \ 7. Include a module (IFGð198N) \

| \\\\\ \\\\\

| IEWBIND FUNC=INCLUDE, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| WORKMOD=WKTOKEN, C

| INTYPE=NAME, C

| DDNAME=INCLLIB, C

| MEMBER=MODNAME, C

| VERSION=3

| CLC RSNCODE,ZERO Check the reason code

| BNE ERREXIT Exit if not zero

| EJECT

| \\

| \ 8. Get all section names from workmod \

| \\\\\ \\\\\

| MVC CURSORN,ZERO

| IEWBIND FUNC=GETN, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| WORKMOD=WKTOKEN, C

| AREA=IEWBBNL, C

| CURSOR=CURSORN, C

| COUNT=COUNTN, C

| TCOUNT=TCOUNT, C

| NTYPE=S, C

| VERSION=3

| CLC RSNCODE,ZERO

| BE GETNOKAY

| CLC RETCODE,FOUR Do we have all the names

| BNE ERREXIT

| GETNOKAY EQU \

| EJECT

| Figure 63 (Part 3 of 8). Sample Binder Application Programming Interface Program

230 DFSMS/MVS V1R4 Program Management

 Using the API

| \\

| \ 9. Get ESD data for each name returned by GETN \

| \\\\\ \\\\\

| L R5,COUNTN Number of sections

| LOOP1 L R3,BNL_NAME_PTR Extract section name

| LH R2,BNL_NAME_CHARS

| STH R2,SECTION

| LA R4,SECTION

| BCTR R2,ð

| EX R2,MOVESEC

| MVC CURSORD,ZERO Reset cursor

| IEWBIND FUNC=GETD, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| WORKMOD=WKTOKEN, C

| CLASS=B_ESD, C

| SECTION=SECTION, C

| AREA=IEWBESD, C

| CURSOR=CURSORD, C

| COUNT=COUNTD, C

| VERSION=3

| CLC RSNCODE,ZERO

| BE GETDOKAY

| CLC RETCODE,FOUR Last buffer

| BE GETDOKAY

| CLC RETCODE,EIGHT No data for item

| BNE ERREXIT

| GETDOKAY EQU \

| L R4,COUNTD Number of ESD entries in buffer

| LTR R4,R4 Skip empty section

| BZ NEXTSECT

| LA R7,ESDH_END First record in ESD buffer

| LOOP2 PUT MYDCB,(R7) Write ESD to output data set

| A R7,ESDH_ENTRY_LENG Move to next ESD in this section

| BCT R4,LOOP2

| NEXTSECT A R9,BNLH_ENTRY_LENG Move to next section name

| BCT R5,LOOP1

| SPACE

| Figure 63 (Part 4 of 8). Sample Binder Application Programming Interface Program

 Chapter 8. Using the Binder Application Programming Interface 231

 Using the API

| \\

| \ END OF DATA - FINISH UP \

| \\

| \\

| \ 1ð. Done processing - delete workmod \

| \\\\\ \\\\\

| IEWBIND FUNC=DELETEW, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| WORKMOD=WKTOKEN, C

| PROTECT=YES, C

| VERSION=3

| CLC RSNCODE,ZERO

| BNE ERREXIT

| SPACE

| \\

| \ 11. End dialog \

| \\\\\ \\\\\

| IEWBIND FUNC=ENDD, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| DIALOG=DTOKEN, C

| VERSION=3

| CLC RSNCODE,ZERO

| BNE ERREXIT

| SPACE

| \\

| \ 12. FREEBUF (Release) our buffer storage \

| \\\\\ \\\\\

| FREEBUFS IEWBUFF FUNC=FREEBUF,TYPE=ESD

| IEWBUFF FUNC=FREEBUF,TYPE=NAME

| \\

| \ 13. Close output dataset \

| \\\\\ \\\\\

| CLOSEDCB CLOSE (MYDCB)

| FREEPOOL MYDCB

| SPACE

| \\

| \ 14. Return to operating system \

| \\\\\ \\\\\

| NORMEXIT EQU \

| LA R15,ð Set a reason code of zero

| B EXIT

| Figure 63 (Part 5 of 8). Sample Binder Application Programming Interface Program

232 DFSMS/MVS V1R4 Program Management

 Using the API

| ERREXIT EQU \

| CLC FREEBFR,FOUR Do we need to FREEBUF our buffers?

| BNE CHECKDLG

| IEWBUFF FUNC=FREEBUF,TYPE=ESD

| IEWBUFF FUNC=FREEBUF,TYPE=NAME

| CHECKDLG CLC ENDDLG,FOUR Do we need to end the Dialog?

| BNE CHECKDCB

| \ Ending the dialog also deletes the workmod

| IEWBIND FUNC=ENDD, C

| RETCODE=RETCODE, C

| RSNCODE=RSNCODE, C

| DIALOG=DTOKEN, C

| VERSION=3

| CHECKDCB CLC CLSDCB,FOUR Do we need to CLOSE and FREE our DCB?

| BNE SETRSN

| CLOSE (MYDCB)

| FREEPOOL MYDCB

| SETRSN L R15,RSNCODE

| EXIT L R13,SAVE+4

| RETURN (14,12),RC=(15)

| \\

| \ PROGRAM CONSTANTS \

| \\

| DZERO DC 2F'ð'

| ZERO DC F'ð'

| FOUR DC F'4'

| EIGHT DC F'8'

| MOVESEC MVC 2(ð,R4),ð(R3)

| Figure 63 (Part 6 of 8). Sample Binder Application Programming Interface Program

 Chapter 8. Using the Binder Application Programming Interface 233

 Using the API

| \\

| \ 15. Variable length string constants \

| \\\\\ \\\\\

| B_ESD DC H'5',C'B_ESD' Class name

| ALL DC H'3',C'ALL' LIST option value

| INCLLIB DC H'6',C'LPALIB' Include library

| LIST DC H'4',C'LIST' LIST option keyword

| MODNAME DC H'8',C'IFGð198N' Member name

| TERM DC H'4',C'TERM' TERM option keyword

| Y DC H'1',C'Y' TERM option value

| \\

| \ 16. STARTD list specifications \

| \\\\\ \\\\\

| FILELIST DS ðF ddname specifications

| DC F'1' Number of list entries

| DC CL8'PRINT',F'8',A(PRINTX) Assign print file ddname

| PRINTX DC CL8'SYSPRINT' The ddname

| SPACE

| OPTLIST DS ðF Global options specifications

| DC F'1' Number of list entries

| DC CL8'TERM',F'1',A(YX) Set TERM option

| YX DC C'Y' TERM option value

| EXITLIST DS ðF User exit specifications

| DC F'1' Number of list entries

| DC CL8'MESSAGE',F'12',A(MESSAGE) Specify MESSAGE exit

| MESSAGE DC A(MSGEXIT) Exit routine entry point

| DC AL4(ð) Base address for exit routine

| DC A(FOUR) Take exit for severity >= 4

| \\

| \ WORKING STORAGE \

| \\

| SAVE DS 18F Register save area

| SAVE2 DS 18F Another for the exit routine

| SAVE13 DS F Register 13 save

| COUNTD DS F Number of ESD records returned

| COUNTN DS F Number of section names

| CURSORD DS F Cursor value for GETD call

| CURSORN DS F Cursor value for GETN call

| DCB@ DS F DCB for output file

| DTOKEN DS CL8 Dialog Token

| RETCODE DS F General return code

| RSNCODE DS CL4 General reason code

| SECTION DS H,CL8 Section Name for GETD

| TCOUNT DS F Total number of sections

| WKTOKEN DS CL8 Workmod Token

| MSG DC 8ðC'ð' Put message buffer

| FREEBFR DS F Indicator for FREEBUFfing our buffers

| \ on exit, if they were GETBUFfed.

| CLSDCB DS F Indicator for closing our DCB

| ENDDLG DS F Indicator for ENDDing the Dialog

| Figure 63 (Part 7 of 8). Sample Binder Application Programming Interface Program

234 DFSMS/MVS V1R4 Program Management

 Using the API

| \\

| \ 17. DCB for output file \

| \\\\\ \\\\\

| MYDCB DCB DSORG=PS,MACRF=PM,RECFM=F,LRECL=8ð,DDNAME=MYDDN

| \\\\\ \\\\\

| \\

| \ 18. NAMES and ESD Buffer Mappings. \

| \ Note that the buffer VERSION must match the \

| \ VERSION of the GETN and the GETD Binder APIs. \

| \\\\\ \\\\\

| IEWBUFF FUNC=MAPBUF,TYPE=ESD,SIZE=5ð, C

| HEADREG=6,ENTRYREG=7,VERSION=3

| IEWBUFF FUNC=MAPBUF,TYPE=NAME,SIZE=5ð, C

| HEADREG=8,ENTRYREG=9,VERSION=3

| LTORG

| \\

| \ MESSAGE EXIT ROUTINE \

| \ \

| \ This exit routine merely prints out a message as an example \

| \ of how the print exit could be used, not how it should \

| \ be used. \

| \\

| \\

| \ 19. Message Exit Routine \

| \ \

| \ Note: This routine will always be entered in AMODE(31). \

| \ If AMODE(24) is required, capping code must be added. \

| \\\\\ \\\\\

| MSGEXIT EQU \

| SAVE (14,12)

| L R12,ð(,R1) Get address of user data

| L R12,ð(,R12) Get user data(pgm base register)

| L R4,28(,R1) Get address of exit return code

| XC ð(4,R4),ð(R4) Set exit return code to zero

| L R3,4(,R1) Get address of address of msg buf

| L R3,ð(,R3) Get address of message buffer

| MVC MSG(8ð),ð(R3) Move the message to the buffer

| LA R3,MSG

| ST R13,SAVE13 Save input save area address

| LA R13,SAVE2 Save area for PUT

| PUT MYDCB,(R3) Write message to data set

| L R13,SAVE13 Restore save area register

| RETURN (14,12) Return to binder

| END

| Figure 63 (Part 8 of 8). Sample Binder Application Programming Interface Program

 Chapter 8. Using the Binder Application Programming Interface 235

 Using the API

236 DFSMS/MVS V1R4 Program Management

 PM User Considerations

Appendix A. Summary of Considerations for the PM User

Migrating from the Linkage Editor to the Binder
Beginning with DFSMS/MVS Version 1 Release 1, the binder replaced the
MVS/DFP linkage editor and batch loader programs as the system default linker
and linker-loader, respectively. Except as noted in this section, the binder assumes
all of the functions of the other two linking programs. Invoking any of the common
linkage editor or batch loader entry points, such as IEWL, HEWL, LINK, LOADER,
etc., will result in execution of the binder.

| While the binder includes all of the functions of the linkage editor and batch loader,
| it is not fully compatible with those programs. It was developed in response to
| many customer, vendor and internal requirements requesting relief from various
| restrictions and processing anomalies in the older programs. The binder attempts
| to satisfy many of those requirements as well as provide a consistent processing
| model. As a result it provides a set of externals which is similar but not identical to
| the linkage editor and batch loader externals.

| The linkage editor and batch loader are also available in DFSMS/MVS. There are
| no plans to withdraw either of those programs at this time, but all users are encour-
| aged to begin using the binder as early as possible. In cases where the binder
| appears unsuitable for a specific application, the older programs are unchanged
| and may be invoked by entry names HEWLKED or HEWLF064 (linkage editor) or
| HEWLDIA (batch loader). Note, however, that all future enhancements will be
| made to the binder and loader exclusively. Other IBM products may have depend-
| encies on functions provided only by these components.

| The binder requires MVS/ESA SP or OS/390 and DFSMS/MVS. It will not run on
| pre-DFSMS/MVS releases. System programmers should not attempt to copy the
| binder to a pre-DFSMS/MVS system in preparation for a software installation. Fur-
| thermore, installations which share DASD volumes between systems at different
| system levels must ensure that the binder is not accessible from pre-DFSMS/MVS
| systems or from a different release of DFSMS/MVS. In addition, users must be
| sensitive to functional and format differences in binder processing and output if
| sharing modules between different releases of DFSMS/MVS.

 SMP/E Precautions
When using the System Modification Program Extended (SMP/E) for software
installation, the system programmer should be aware of the following. In
DFSMS/MVS, the binder is the default linker program invoked by SMP/E. Because
the binder handles some error conditions differently than did the linkage editor, it is
possible that certain error conditions may go unnoticed during the installation
process.

Binder-detected errors which could cause the linked program to fail during exe-
cution are reported with an error message and a return code 8 being passed back
to SMP/E. In cases where conflicting input may or may not represent an error, a
warning message and return 4 will be provided. Since SMP/E recommends that
users specify a maximum return code of 8 in the linkedit utility entry in the global
zone, conflicting or incomplete input to the binder may go undetected during SMP/E

 Copyright IBM Corp. 1991, 1997 237

 PM User Considerations

APPLY processing. Because the binder's default action in these error situations
may be different from that of the linkage editor, the results of the installation may
be different with the binder. System programmers are strongly encouraged to
check all severity 8 error messages from the binder.

Storage Considerations Using the Binder
The binder requires a larger region than does the linkage editor. This is because
the binder has relaxed most of the restrictions inherent in the linkage editor,
replacing fixed-length tables with open-ended lists which require more storage. In
addition, the binder does not use a DASD work file for spilling module data when
processor storage has been exhausted, as does the linkage editor. The SYSUT1
DD statement is ignored. Instead, it uses primary or data space storage for all
module data. Because of the free-form design of the binder's internal data struc-
tures and the number of controlling factors involved, it is not possible to accurately
predict binder storage requirements.

It is recommended that the binder be given a region of at least 2 MB, larger for
very large modules or modules consisting of a large number of CSECTs, external
names or address constants. Most binder working storage will be obtained from
above 16MB, if sufficient space is available in the extended private area. Installa-
tions which restrict the extended region size default through use of the IEFUSI
installation exit may force the binder to obtain its storage from the private area
below 16MB. In such cases, the binder user may be forced to specify a very large
region size, such as 16M, in order to obtain sufficient storage in the extended
region.

The binder requires a data space of at least 16MB. If it cannot obtain sufficient
data space storage, it will attempt to obtain that storage from the user's address
space, first from above 16MB and then from below.

It is also recommended that binder users do not specify SIZE or WKSPACE as a
binder execution parameter, unless the binder will be co-resident with another proc-
essing program. Either of these options will limit the amount of storage available to
the binder and, if insufficient, may cause the binder to fail with an out-of-storage
condition. The problem is aggravated if insufficient extended region is available
and all binder working storage is forced below 16MB.

Error Handling in the Binder
The binder is less tolerant of errors and inconsistencies in its input than was the
linkage editor. Error conditions were frequently ignored or overridden by the
linkage editor, which may or may not be what the user intended. Often such errors
and the resulting system action went unreported.

The binder attempts to diagnose all such error conditions and take a course of
action which is consistent with its general processing model. Input modules and
other files which are inaccessible or are in an incorrect format will generally be
omitted. Control statements and parameters containing invalid syntax or data will
also be discarded. All such errors will result in an error message and a return code
8. Conflicting and inconsistent specifications and data may result in either a
warning (severity 4) or error (severity 8) being issued, depending on the serious-
ness of the condition and the likelihood of program failure during execution.

238 DFSMS/MVS V1R4 Program Management

 PM User Considerations

As a result, the binder issues many more messages than did the linkage editor.
The binder contains nearly four times the number of unique error messages as did
the linkage editor and batch loader combined, in an effort to more accurately diag-
nose error conditions.

| Changes and Extensions in Output Using the Binder
| The binder provides significant extensions in output, i.e. error messages, output
| listings, information included, for example:

| � All message numbers were changed in the binder in DFSMS/MVS 1.1. Mes-
| sages are more numerous, accurate and informative. (In fact, users may
| choose to use MSGLEVEL to suppress some messages.)

| � Output listings provide information about the binding job, more alias informa-
| tion, and operational and summary data.

| � Output listings include the binder release level, processing options and program
| attributes.

| � Default for output listings is LIST=SUMMARY. This will cause the following
| (more than for the linkage editor) to be printed:

| – Target library (SYSLMOD) description
| – Processing options
| – Date/time of SAVE
| – Module attributes (that are stored in directory)
| – Entry points

| � By specifying the MAP option, output listings will also include the source of
| each CSECT in the module, specifically the ddname, member name, concat-
| enation number, and a cross-reference table of ddname to dsname.

| If you do not wish to receive all of this output, several options are available to limit
| the amount of printed material produced during binder processing:

| � The LIST option can be used to limit the volume of automatic printed output,
| such as the echoing of control statements and the generation of the processing
| summary report.

| � Not specifying the MAP and XREF options will significantly reduce the amount
| of printed output generated for those reports.

| � Specifying MSGLEVEL will allow you to suppress messages below a certain
| severity level.

| � Specifying the suboption NOIMPort on the LIST option will suppress the
| echoing of import statements for DLLs.

| Note: Remember that limiting binder printed output in any of these ways may hide
| problems in your module.

Binder Control Statements and Options
| Note: Certain processing differences must be considered when migrating from the
| linkage editor to the binder. Subtle differences in the way control statements and
| options are processed may affect the resultant load module or program object. Dif-
| ferences between PDS and PDSE libraries may also affect the results. Some of
| these differences are described below.

 Appendix A. Summary of Considerations for the PM User 239

 PM User Considerations

| Several of the binder control statements and processing options have interrelated
| functions. The binder attempts to process both in a consistent way, even though
| the processing may deviate from that of the linkage editor. Toward this end, the
| following rules are observed when processing data from all sources (included
| modules, control statements, specified options or API function calls):

| � Control statements always override the corresponding batch parameters. The
| scope of the control statement is the module in process.

| � Batch parameters, including those specified on the STARTDialog function call,
| always override the input module, such as ESD data. The scope of the batch
| parameters is the entire binder invocation or dialog.

| � Module data always prevails over binder default values.

| � If duplicate specifications are encountered, the most recent specification will
| prevail. That is, the binder processes the last occurrence of control statements
| and options. (The linkage editor processes the first or last depending on
| option.)

| – When there are multiple ENTRY statements (there shouldn't be), the binder
| will process the last ENTRY statement whereas the linkage editor will
| process the first ENTRY statement. This could result in execution errors if
| conflicting ENTRY statements are present.

| – Control statements and parameter strings are always processed in a left-to-
| right sequence. Function calls are processed in the order received.

| � Control statements and parameters containing invalid syntax, keywords or
| values, will be discarded and reported as errors.

Binder Processing Differences from the Linkage Editor
| The binder behavior may be different from the linkage editor in some significant
| ways:

| � The linkage editor ignored data it didn't recognize or couldn't process. The
| binder also discards non-processable input, but diagnoses the error with a
| message and non-zero return code.

| � The linkage editor accepted the first ENTRY control statement encountered,
| whereas the binder accepts the last. This could result in execution errors if the
| multiple statements specify conflicting entry points.

| � Unlike the linkage editor, explicit AMODE and RMODE specifications during
| binder processing always override the corresponding attributes in the ESD of
| included modules. A new MIN value has been provided for AMODE to allow
| ESD influence over the results. RMODE(MIN) is the default and can not be
| specified.

| – AMODE and RMODE are treated as independent options until they are
| needed during binder processing. The linkage editor processes them as a
| pair. If only one of the pair is specified on either the parm string or a
| control statement, the other will be set depending on the one specified. If
| neither option is specified or both are specified, then the binder will behave
| like the linkage editor. If only one is specified, the results may be different.

| – Many object modules, especially assembler programs and programs written
| for older compilers, indicate AMODE(24) or RMODE(24) in their ESD
| records. Overriding these values at bind time will produce warning mes-
| sages IEW2646I and IEW2651I, one per section in error. The linkage

240 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| editor ignored the condition but the binder assumes that a valid error condi-
| tion may exist. By specifying the binder option COMPAT=LKED (see
| below), you can force the binder to suppress these messages and leave
| the return code unchanged.

| � Reusability (REUS, RENT and REFR) is handled differently by the binder.
| While the linkage editor processes the attributes independently, the binder
| stores them as a single value. The binder assumes that reenterable programs
| are also serially reusable, and the refreshable programs are also reenterable.
| This should not cause any processing difficulties.

| – The binder was designed to always accept an explicit override of a module
| attribute, whereas the linkage editor sometimes does not. For example,
| although the JCL may specify RENT in the parm list, when one CSECT
| being bound into a load module is reusable and the rest are reentrant, the
| linkage editor ignores the external parameter and assigns the module as
| reusable. The binder will allow the explicit override of RENT on the JCL to
| take priority.

| � Since the release of the binder, customer feedback indicated there has been
| some dependence on the internals of the linkage editor processing in two areas
| - module attribute defaulting and AMODE/RMODE consistency.

| – Many job streams specify RENT with the expectation that the linkage editor
| would look at all the pieces and assign the highest level reusability it could,
| i.e. the customer expected the linkage editor to override any external
| parameters.

| – Many programs in the field continue to be bound with inconsistent
| AMODE/RMODE specifications which are known and ignored by the
| linkage editor.

| As a result, an option (COMPAT=LKED) was added to the binder. When this
| is specified in the JCL the binder will behave like the linkage editor in the fol-
| lowing ways:

| – The binder will ignore externally specified module reusability attributes IF
| any of the included load modules or program objects are of lesser reusa-
| bility. A summary message is produced to show that the overall reusability
| of the module was downgraded.

| – AMODE/RMODE conflict messages (IEW2646I, IEW2651I) will not be
| issued by the binder when conditions such as AMODE ANY modules are
| combined with AMODE 24 modules.

| Note: It is essential that binder messages regarding reusability, AMODE and
| RMODE be analyzed. The appropriate action in all such cases is to correct the
| input, and perhaps to re-bind the program if the attributes displayed in the
| binder Processing Summary are incorrect.

| � The MVS/DFP batch loader can be used to load an in-storage object module.
| While this function is not supported by the binder, the binder will invoke the
| batch loader transparently when this interface is invoked. Applications which
| continue to use this interface may not use any new functions provided by the
| binder. This support is limited and provided for compatibility only.

 Appendix A. Summary of Considerations for the PM User 241

 PM User Considerations

Other Binder Processing Differences
Some binder processes which differ from the linkage editor are not directly related
to binder input. These are affected by environmental differences, binder capacities
and possible error conditions detected during prior processing. In general, they are
not directly controllable by binder specifications and should be considered unpre-
dictable.

| � The order of modules included during autocall processing is not specifiable by
| the user and should therefore be considered unpredictable. Due to different
| autocall algorithms in the two programs, the sequence of includes will be dif-
| ferent in the binder than it was in the linkage editor. If this sequence is impor-
| tant, then you should provide INCLUDE control statements in the input stream.
| (Be aware that this only controls the order in which Csects are brought into
| storage by the binder. It does NOT control the final order of the Csects in the
| load module or program object. That is controlled by the ORDER control state-
| ment.)

| � The binder handles nested INCLUDEs differently. It does not ignore all text
| following the nested INCLUDE as does the linkage editor.

| � Specifying uninitialized space in your source program and assuming it will be
| initialized may provide unpredictable results during execution. Both the binder
| and the linkage editor fill part or all of such data areas with binary zeros, but
| their algorithms are not the same. In addition, these algorithms are dependent
| on a number of environmental factors such as the block size and the amount of
| space remaining on a track.

| – If the program is sensitive to the initial values stored in large data areas,
| the programmer must ensure the storage is properly initialized, either at
| compile time or at program initialization time.

| – You can cause the binder to initialize all uninitialized areas in a PM2 or
| PM3 format program object by specifying the FILL option. FILL allows you
| to initialize all uninitialized areas of the module and to specify the byte used
| for initialization. FILL cannot be used for a PM1-format program object.

| � PM1 program objects may occupy more space on DASD than did their load
| module counterparts. In load module format, large uninitialized areas of the
| program were represented by gaps in the program text; in the PM1 program
| object format those gaps are filled with binary zeros and written out to disk.
| However, gaps are reinstated in program objects in PM2 format and later.
| They may still take a little more space on DASD than load modules because
| program objects are formatted on 4K boundaries with the minimum size being
| 4K, and the algorithm for compacting DS space differs from that used by the
| linkage editor.

| � The binder will not, by default, replace an executable program with a non-
| executable program . This is a departure from linkage editor processing,
| where the new module would replace an existing module of the same name
| regardless of the executability of either module. You may cause the binder to
| save a non-executable module by specifying the STORENX option in the bind-
| er's PARM field.

| � The binder will not save an alias or alternate entry point name if it is the
| primary name of an existing member in the library. Like the linkage editor, if
| replace (“R”) has been specified on the NAME control statement and the binder
| discovers that the name is an alias of another member in the library, that alias
| will be “stolen” for the new module (load module or program object). Unlike the

242 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| linkage editor, however, if the binder discovers that the alias name already
| exists in the library as a primary (member) name, then the alias will not be
| stored.

| Note: This design alternative was chosen to prevent users from inadvertently
| specifying as an alias the name of an existing module, thereby destroying the
| existing module and possibly creating an unrecoverable situation in the library.

| � The binder bypasses LLA when retrieving a directory entry from a PDSE or
| PDS during INCLUDE processing. The linkage editor first tries to obtain its
| directory entries from LLA. This means that if the module was modified and
| not refreshed in LLA, then the linkage editor would not get the latest version of
| the module to process. The binder always gets the latest version by obtaining
| the directory entry directly from the library directory on DASD.

| � Unlike load modules, program objects may not be zapped in place , that is, a
| new program object is created in the PDSE and the old one is deleted (after all
| connections to it are released). This means that LLA will continue to keep the
| old connection and will not see the modification unless that program is explicitly
| refreshed.

| � Other binder improvements :

| – There can be up to 10 temporary modules (TEMPNAM0, TEMPNAM1,
| etc.).

| – PDSEs and PDS's can be mixed in the concatenation. Unlike the linkage
| editor, the binder supports SYSLIB and SYSLIN concatenation of object
| files with program libraries (both PDS's and PDSEs).

| – The binder allows mixed case input (190 character set) specified with the
| option, CASE.

| – Most of the binder resides above the 16 Mb line in ELPA. It runs in
| problem program state, user key.

| Program Objects: Features and Processing Characteristics
| Program objects remove many of the limitations and restrictions inherent in the
| current load module. Following are some of the key features of program objects,
| as well as considerations for their use.

| Program Object Structure
| Program objects have the following structural features:

| � Program object design allowed for the removal or increase of most size
| restrictions, including maximum text size (now 1 gigabyte) and number of
| control sections (now unlimited)

| � Because program objects reside exclusively in PDSEs, they can take advan-
| tage of that library technology and its many advantages

| � The program object structure is generalized and extendable. It has and will
| continue to change with each PM release.

| � Program objects support long names (up to 1K).

| � Program objects contain many of the same enhancements supported in the
| new object file, GOFF (Generalized Object File Format), which is currently

 Appendix A. Summary of Considerations for the PM User 243

 PM User Considerations

| created by the High Level Assembler (as well as the Binder as an intermediate
| structure). This includes support for C/C++ writable static.

| � Program objects contain multiple classes of text, distinguished by attributes
| which control binding and loading characteristics and behavior. Classes are
| central to C and DLL support.

| – There are 2 types of classes - text (byte-stream) and non-text (record-like,
| IDR, ADATA)

| – The separate attributes assigned to each class include:

| - LOAD - the class is brought into memory at the time the module is
| loaded (typical case today)
| - DEFERRED LOAD - The class is prepared for loading, but not
| instantiated until requested (new in DFSMS/MVS 1.4)
| - NOLOAD - The class is not loaded with the program, i.e. it is non-text.
| - RMODE 24/ANY - Indicates placement of segments within virtual
| storage

| – A section is the smallest unit which may be manipulated by users
| (replaced, deleted, ordered). Each section may supply contributions to one
| or more classes.

| – Classes are bound into independently loadable segments . A segment
| contains classes with compatible attributes. A program object may have
| multiple segments.

| – The loading characteristics of the class (and segment) determine the place-
| ment of the segment in virtual storage. Multi-segment program objects can
| be loaded into non-contiguous areas of virtual storage, e.g. when bound
| with the RMODE(SPLIT) option.

| – Program objects contain a class of data specifically intended for users to
| save associated or application data (ADATA). It is not loadable (NOLOAD).
| This data may be source statements, debugging tables, user information,
| history data, documentation, etc. It is accessible via the binder API.

| Program Objects on DASD Storage
| � Unlike the load module, whose format is documented and universally available,
| the format of the program object is NOT externalized. The binder API
| should be used to access program data.

| � Consistent with all data in PDSEs, program objects are organized in 4KB
| blocks, making them accessible by both the binder and loader via DIV (Data in
| Virtual) access mechanisms. The minimum length of a program object is 4KB.

| � When saving a program object in PM1 format, all uninitialized text in a program
| object (i.e. DS space in a program) is written to DASD as binary zeros. DS
| space is no longer written to DASD for PM2 and PM3-format program objects.

| � If small programs (< 4KB) or programs with large allocations of DS space are
| converted from load modules to program objects, more DASD space will be
| required. In most other cases, less DASD space will be required, because the
| 256-byte RLD/control records between text blocks are eliminated.

| � Program objects may not be in scatter-load format.

| � IEBCOPY load/unload functions will process program objects with NO change
| to the format, that is, it remains the same as it is on DASD.

244 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| Residence For and Access to Program Objects
| The following describes the program object access modifications and restrictions:

| � The program object can be accessed for input using the SAM access method,
| though this is not recommended. While 4KB blocks will be presented to the
| user, no description of these blocks will be available. (This access is provided
| primarily for browse and compare services, where there is no need to interro-
| gate or understand the format of the data.)

| � No user can access a PDSE program library directly for output. This function is
| reserved exclusively for the binder. Services that perform output functions, for
| example, AMASPZAP, must invoke the binder. Applications can use the binder
| API to put data into a program object.

| � Program objects must reside in either PDSEs or OpenEdition files. Data
| members and program objects may NOT reside in the same PDSE. The PDSE
| type is determined by the data type on issuance of the first STOW into an
| empty PDSE.

| � There are no “dangling aliases” for program objects. When the primary
| member name is deleted or replaced, the old aliases are deleted automatically.

| � The DCB RECFM field for PDSE program libraries must be specified the same
| as it is now for PDS program libraries, i.e. RECFM=U (undefined record
| format). While this has no meaning in terms of the actual program object
| record format, traditionally it has helped to identify program libraries. To
| promote transparency and usability, this record format will continue to be
| required as one of the program library indicators for PDSEs as well as PDS's.

| � Applications that need to know if a data set is a PDSE program library can
| issue an external macro, ISITMGD, to get this information. The data set must
| be open at the time. This macro is documented in DFSMS/MVS Using Data
| Sets.

| PDSE Program Library Directory Access of Program Objects
| There are some changes in the way that PDSE directories may be accessed for
| program libraries. They include:

| � PDSE program object directory entries have been extended. Information about
| the type of member can be obtained via the directory entry, though not as
| directly as ISITMGD. (Multiple tests continue to be required because the
| program object indicator in a program directory entry is located in the same
| place as the user data field for a data directory entry.)

| � One can still use BLDL to access PDSE program directory entries. The format
| is converted to the current format, with some modifications when the program
| object exceeds 16 meg.

| � The IHAPDS mapping, which maps the PDS directory entry information
| returned by the BLDL macro, has changed in order to support program objects
| and accommodate the >16Meg program objects.

| – There is a bit (PDS2LFMT) which indicates that the load module is a
| program object and that the PDS2FTB3 flags are valid and contain addi-
| tional information.

| – There is a bit (PDS2BIG) that indicates that the length field (PDS2STOR)
| does not hold the module length and that the large load module extension

 Appendix A. Summary of Considerations for the PM User 245

 PM User Considerations

| exists. The PDS2VSTR field in this extension contains the fullword load
| module length in this case, and PDS2STOR contains a zero.

| � A second directory service in support of PDSE directories, DESERV, was
| externalized in DFSMS/MVS 1.3. You may issue DESERV for either PDS or
| PDSE directory access, but you must pass the DCB address. It does not
| default to a pre-defined search order, as does BLDL. (Both BLDL and
| DESERV support “bypass-LLA.”) DESERV returns an SMDE which, for PDSE
| directories, contains more information than is mapped by IHAPDS.

| � One can still read PDSE Program Library directories using BSAM. The format
| of each directory entry will be converted, as is done with BLDL.

| � As with all PDSEs, one cannot access PDSE Program Libraries using EXCP.

| Extensions to the PM Loader to Support Program Objects
| Most of the loading functions are transparent to the user. The loader will know
| whether the program being loaded is a load module or a program object by the
| source data set type. If the program is being loaded from a PDS, it calls
| IEWFETCH (now integrated as part of the loader) to do what it has always done. If
| the program is being loaded from a PDSE, a new routine is called to bring in the
| program using DIV. The loading is done using special loading techniques that can
| be influenced by externalized options.

| Page Mode Loading
| Note: Page mode loading is not supported for program objects loaded from
| OpenEdition files.

| Program objects may be loaded in Page Mode .

| � This mode is the default, unless any of the conditions described below under
| Move Mode exist. Program objects are mapped into virtual storage. If the
| program object is less than 96K the whole program is pre-loaded. When over
| 96K the first 16 pages are pre-loaded; additional pages are brought in during
| execution as they are referenced.

| � Program objects may be cached in the PDSE hiperspace cache, so frequently
| referenced pages will be found in cache.

| � When the entire module is read in and relocated before execution begins, it is
| referred to as Immediate Mode , a subset of Page Mode.

| An option, FETCHOPT=PRIME, allows you to specify explicitly that the module
| should be completely relocated before execution. This option only affects Page
| Mode and forces Immediate Mode. It has the benefit that the loader can imme-
| diately release all storage resources that would otherwise be used to contain
| loader control information (and would usually be held until the module is
| deleted.) It has the disadvantage of bringing in the entire module when it may
| not be necessary.

246 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| Move Mode Loading
| Program objects may also be loaded in Move Mode from either a PDSE or
| OpenEdition file. This mode is used in those cases where page alignment of virtual
| storage can not be guaranteed. The entire program is always loaded and relocated
| before execution. The loader uses Move Mode when:

| � A directed load has been requested (i.e. the virtual storage address was
| passed on the LOAD SVC).

| � FETCHOPT=PACK was specified at Bind time, forcing Move Mode by
| requesting that program objects be packed together in virtual storage rather
| than each be aligned on a page boundary.

| � The program object is in overlay format.

| � The job step is running V=R.

| LLA and Checkpoint/Restart Support for Program Objects
| � LLA (Library Lookaside) supports both the caching of PDSE program directo-
| ries and the caching of program objects (loaded from PDSEs), using the same
| caching algorithms as for load modules. The interfaces to enable LLA are the
| same as they are today for load modules.

| Note: As mentioned earlier, there is one change in PM/LLA processing. The
| Binder will never read in modules during its bind processing using the directory
| entry found in LLA cache. The Binder will always get the directory entry (and
| therefore the latest copy) directly from DASD.

| � Programs can be Checkpointed and Restarted with program objects in the
| address space if the PDSE is not open under the user's TCB, (i.e. it is OK if
| PDSEs are JOBLIB, STEPLIB or Linklist). In addition, there must be no
| overlay program objects in the address space when a Checkpoint is issued.

| Migrating from Load Modules to Program Objects

| What Should be Converted to Program Objects?
| Following are considerations in determining whether or not to migrate to program
| objects:

| � The only system library which supports program objects is SYS1.LINKLIB (plus
| all libraries in Linklist concatenation.). SYS1.LPALIB, SYS1.NUCLEUS,
| SYS1.SVCLIB, etc. are opened and accessed during IPL before the PDSE
| support is established and therefore can not be PDSEs.

| – However, as of DFSMS/MVS 1.4 and OS/390 2.4, it is possible to put
| program objects into LPA using the Dynamic LPA functions. This function
| opens the program libraries to be included dynamically after the system has
| been initialized, thus allowing PDSE participation. The program objects
| may be in any user-specified authorized PDSE program library. (See the
| OS/390 2.4 documentation for more details.)

| � Program objects have the same restrictions as do data members in PDSEs,
| that is, they cannot be accessed using EXCP, nor can there be any TTR calcu-
| lations done against them. Programs requiring this access should not be con-
| verted.

 Appendix A. Summary of Considerations for the PM User 247

 PM User Considerations

| � If new program object features are exploited, such as a length greater than 16
| meg, or more than 32767 external names, greater than 8-byte names, multiple
| classes, multi-parts, split-modes, or deferred classes, the program object
| cannot be converted back to a load module.

| � PDSE program libraries may take advantage of the PDSE cross-system sharing
| support offered in DFSMS/MVS.

| � As discussed earlier, special attention must also be given to mixing specific
| levels of the program object with different DFSMS releases.

| � Only program objects can reside in OpenEdition files. Load modules are not
| supported.

| Converting Load Modules to Program Objects
| Once the environment has been established, program objects can be created. The
| data class definitions for PDSEs and the JCL/catalog procedures can be used to
| provide implicit migration. Various utilities may also be used to migrate modules
| explicitly. These include:

| � IEBCOPY - can copy either single programs or entire libraries between PDS's
| and PDSEs. The binder is invoked to do the conversion.

| � DFDSS - provides the means for migrating one or a collection of load libraries.
| Conversion is only done on a COPY operation, not on a DUMP/RESTORE.

| � Binder - may be invoked to rebind modules for the purpose of
| migrating/converting them.

| Note: This is the only method available for copying modules into OpenEdition
| files.

| Users presently using the prelinker-based (tactical) design may convert to the
| binder-based (strategic) solution with minimal effort. Recompilation of existing
| modules is unnecessary. Rebinding of existing support libraries, such as C370LIBs
| and SCEELKED, into PDSE format is unnecessary.

| The tactical and strategic DLL designs may coexist in the same system or complex
| without special precautions. This will allow migration of applications to the new
| support, one at a time.

| Compatibility of Program Object Formats
| � Downward Compatibility : The default program object format is always the
| latest, i.e. in DFSMS/MVS 1.4 it is “PM3.” If the PDSE is to be shared with
| systems at a earlier level of DFSMS, that level of binder/loader cannot support
| PM3 structures. Therefore it is necessary to specify the COMPAT option on
| JCL or in a PROC for the job step, or change the default by specifying in the
| installation options COMPAT=xxx, where xxx is the earliest level of DFSMS
| (and PM) sharing that PDSE, (DFSMS 1.1/1.2 =“PM1,” DFSMS 1.3 =“PM2,”
| DFSMS 1.4 = “PM3”) Remember that the requested functions must be con-
| sistent with what is available at the requested level.

| � Upward Compatibility : All earlier PM functions, interfaces, formats and user
| job streams should work compatibly with the current release. There will be
| some changes in report formats and messages, where changes are necessary
| for this new function.

248 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| � PM3 and PM2 program objects do not support overlay format. The binder will
| automatically produce a PM1 version of the program object if overlay is
| requested and the SYSLMOD data set is a PDSE.

| � During API processing for “intent access” the module will be saved in the same
| format it had on input if followed by a copy operation. During API processing
| for “intent bind” (and both libraries are PDSEs), the module will be saved as a
| PM3 program object unless overridden with the COMPAT option.

| � If the user specifies COMPAT with a value other than PM3 and the workmod is
| using new function, the save will be failed with RC=12.

| Utilities, Components and Products that Support Program Objects
| � Program objects are supported by the following DFSMS utilities/services:

| – IEBCOPY
| – IEBCOMPR
| – IEHLIST
| – IEHPROGM
| – AMBLIST
| – AMASPZAP
| – TSO LOAD/GO Prompter

| � Program objects are not supported by the following DFSMS utilities:

| – IEHMOVE
| – IEBDG
| – IEBGENER
| – IEBPTPCH

| � DFdss support includes:

| – DUMP and RESTORE of PDSE Program Libraries, but without conversion,
| i.e. a dumped PDSE Program Library may not be restored to a PDS.

| – COPY between PDSE and PDS Program Libraries. The binder will be
| invoked automatically and each of the members will be converted.

| � ISPF supports the copy of PDSE program libraries or members. The binder
| options are supported transparently in background (option 5.7); the foreground
| (option 4.7) invokes the TSO LOAD/GO Prompter which invokes the binder.

| � SMPE does not support REL files for PDSEs, however copying or binding into
| a PDSE should be transparent to SMPE.

| � TSO/E Test supports program objects with one limitation. It can only obtain
| information from those program objects for which the DCB used to load them
| from their program libraries is accessible. This means that TSO/E Test can not
| be used to test program objects that were loaded by LLA or loaded into LPA.

 Appendix A. Summary of Considerations for the PM User 249

 PM User Considerations

| Summary of What's New for the PM User in DFSMS/MVS 1.4

| The Binder Incorporates LE/370 Prelinker Functions
| The binder in DFSMS/MVS 1.4 incorporates the functions of the LE/370 Prelinker,
| specifically the handling of long names and support for the C WSA (writable static
| area) as a newly defined “deferred” class, thus removing the need for a separate
| prelinker step when the target program library is either a PDSE or OpenEdition file.

| Note: The C Prelinker, also known as the C Pre-Link Utility, is currently known as
| the LE/370 Prelinker. They are all the same utility, which is referred to herein as
| the prelinker.)

| Processing With the Prelinker
| The output from the C or C++ compiler is an extended object file (XOBJ). As
| shown in Figure 64 on page 251, the prelinker then uses one or more of these
| XOBJ object files as input together with the prelinker control statements (INCLUDE,
| LIBRARY, and RENAME) to create a traditional object module. The prelinker per-
| forms autocalls for unresolved references by including object modules from PDS
| libraries, C370LIB libraries, or OpenEdition archive files.

| Output from the prelinker is then fed into either the binder or linkage editor, both of
| which use autocall to resolve any remaining references to non-C routines. The
| linkage editor always creates a load module as output. The binder's output module
| may be either a load module or program object, depending on whether the
| SYSLMOD DD statement specifies a PDS or PDSE program library.

| Processing Without the Prelinker
| As before, the C/C++ compiler takes the source program and produces an XOBJ.
| The binder in DFSMS/MVS 1.4 has been extended to accept not only object
| modules (in all structures, i.e. traditional, XOBJ and GOFF), load modules, program
| objects and OpenEdition files, as earlier, but also OpenEdition archive files and
| C370LIBs for autocall functions. It also accepts all prelinker control statements. In
| addition, a C renaming routine was added to the existing interface validation logic in
| the binder. The result is that the prelinker step can be eliminated when SYSLMOD
| specifies a PDSE program library because all the work previously performed by the
| prelinker is now done by the binder. (This control flow is shown on Figure 65 on
| page 253.)

| Eliminating the prelinker step has several advantages:

| � Improved performance with the elimination of a job step

| � Easier incorporation of new functions, released from the format restrictions
| imposed by an intermediate data structure

| � Rebindable module as output, i.e. it is not necessary to return to object files to
| rebind

| � More efficient code distribution and servicing since single object files can be
| shipped in PTFs rather than the fully bound C module.

250 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| ┌───────┐

| ┌───────┐│

| ┌───────┐││

| │Source ││┘

| │Program│┘

| └────┬──┘

| │

| 6

| ┌─────────┐

| │C/C++ |

| │Compiler │

| └────┬────┘

| 6

| ┌───────┐

| ┌───────┐│ ┌────────┐

| ┌───────┐││ │Control │

| │ XOBJ ││┘ │ Stmts │

| │ │┘ └────┬───┘

| └───┬───┘ │

| │%─────────────┘

| ┌───────┐ 6

| PDS OBJ ┌───────┐│ ┌─────────┐

| C37ðLIB │ Call │├───5│ C Pre- │

| Archive │Library│┘ │ Linker │

| └───────┘ └────┬────┘

| 6

| ┌───────┐

| │ OBJ │

| │ │

| └───┬───┘

| ┌───────┐ 6

| PDS OBJ ┌───────┐│ ┌─────────┐

| Loadmod │ Call │├───5│Linkedit/│

| ProgObj │Library│┘ │ Binder │

| └───────┘ └────┬────┘

| 6

| ┌───────┐ PDS, PDSE or OE file

| │PO or │ (if Binder)

| │LoadMod│

| └───────┘

| Figure 64. Invoking the Prelinker. This diagram shows where the prelinker is invoked when the binder 'prelinker'
| function is not used

 Appendix A. Summary of Considerations for the PM User 251

 PM User Considerations

| Support for DLL Modules in Dynamic Link Libraries
| This new function introduced in OS/390 2.4 includes support in the Language Envi-
| ronment (LE), the C RTL (C Runtime Library) and Contents Supervision, as well as
| Program Management. Dynamic linking provides the ability to defer the binding of
| functions and variables (in DLLs) until execution. (Until now in MVS the entire
| application had to be statically bound or the application had to include linking via
| LINK, LOAD or XCTL.) While “deferred” classes are bound as a class with the
| program object during static bind, DLLs are separately bound program objects with
| the DLL attribute. They reside in dynamic link libraries and are invoked during exe-
| cution by DLL-enabled applications. Program objects with the DLL attribute can
| “export” variables and functions. DLL-enabled applications, also with this attribute,
| can “import” variables and functions belonging to DLLs.

| Note: Limited support for dynamic linking was first made available on the MVS
| platform in 1995 to provide DLL capability for C applications. Only now, with
| OS/390 2.4 and DFSMS/MVS 1.4, is a generalized DLL capability available to all
| languages, transparent to the application, and independent of the Prelinker.

| Support for C ++/Object Oriented Programs
| Additional C++ support, beyond what is provided for DLLs and C constructed
| reentrancy, is included as follows:

| � The binder recognizes certain CSECTs in the XOBJ object module as “concat-
| enated objects” and performs special processing for them.

| � Support has been added to the binder for C++ long function names which have
| been encoded as “mangled names.” The mangled names will be “demangled”
| prior to displaying on end-user reports, listings and displays.

| � The binder also supports C++ generated “template” functions.

| � The binder builds a descriptor for supporting internal linkage functions.

| Support for MVS OpenEdition
| The binder extended its support for OpenEdition and the C89 command, as follows:

| � A new control statement and API function, AUTOCALL, allows incremental
| autocall by the C89 command processor. This differs from the regular autocall
| in that it is not followed by binding.

| � The binder is extended to accept OpenEdition archive libraries in place of con-
| ventional library concatenations for autocall. They can not be concatenated
| with other archive files or libraries of any kind.

| � The binder accepts an OpenEdition file name in place of a ddname on some
| API calls and control statements. This eliminates the need for C89 to dynam-
| ically allocate files which will never be opened. All binder files, except options
| files and diagnostic files, may be allocated to OpenEdition files.

| � Note that the C89 command always bypasses the prelinker and invoke just the
| binder (because the linkage editor does not support OpenEdition to create the
| most current program objects (that is, COMPAT=CURR).

252 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| ┌───────┐

| ┌───────┐│

| ┌───────┐││

| │Source ││┘

| │Program│┘

| └────┬──┘

| │

| 6

| ┌─────────┐

| │ C/C++ │

| │ Compiler│

| └────┬────┘

| 6

| ┌───────┐

| ┌───────┐│ ┌────────┐

| ┌───────┐││ │Control │

| │ XOBJ ││┘ │ Stmts │

| │ │┘ └────┬───┘

| └───┬───┘ │

| │ │

| │%─────────────┘

| │

| a) C37ðLIB ┌───────┐ 6

| b) PDS Obj ┌───────┐│ ┌─────────┐

| c) Loadmod │ Call │├───5│ Binder │

| d) ProgObj │Library│┘ │ │

| e) OE Archv └"──────┘ └"───┬"───┘

| f) OE file 6

| ┌───────┐ PDSE

| │Program│ Program

| │Object │ Library or OE file

| └───┬───┘

| 6

| ┌─────────┐

| │ │

| │ Loader │

| └─────────┘

| Figure 65. Prelinker Elimination. This is the optional control flow in DFSMS/MVS 1.4.

| Binder Control Statements Added in DFSMS/MVS 1.4
| � New AUTOCALL control statement supports incremental autocall for
| OpenEdition C89 command. It directs the binder to attempt resolution of all
| unresolved references up to that point, using the specified path name or
| ddname, without binding the module.

| � New RENAME control statement performs the same function as the LE
| Prelinker RENAME control statement.

| � New IMPORT control statement performs the same function as the Prelinker
| IMPORT control statement. It identifies functions and variables to be imported
| and the library member where they can be found (IMPORT control statement
| can come from either SYSLIN or an included file.)

| – The binder will accept IMPORT statements generated by either the binder
| or prelinker.

 Appendix A. Summary of Considerations for the PM User 253

 PM User Considerations

| – The IMPORT statement indicates that the reference is to be imported if not
| resolved by bind time, and contains the member name of the DLL con-
| taining the symbol definition.

| Binder Options added in DFSMS/MVS 1.4
| � New UPCASE option supports the LE Prelinker renaming rules.

| � New DYNAM(DLL) option indicates that the module is to be DLL enabled which
| means a side deck of IMPORT statements and import/export tables will be
| produced and the program object can load DLLs and/or be loaded as a DLL.

| � Modified ALIASES(ALL) option instructs Binder to create hidden aliases for all
| external symbol definitions.

| � Two new keywords have been added to the COMPAT option. COMPAT=PM3
| requests that the binder produce the DFSMS/MVS 1.4 level of the program
| object (i.e. PO3). COMPAT=CURR/CURRENT requests that the binder
| produce the most current level of the program object (which is PO3).

| Note: The user can request that a specific level/version of the program object
| be generated by the binder (assuming the contents of the binder input does not
| require a higher level), by specifying the COMPAT option on the job step, or in
| the installation defaults. COMPAT=PM1/PM2/PM3 or CURRENT (for latest
| level) are the supported levels of program object.

| � LINECT maximum value is increased from 99 to 200.

| � All 3 existing exits, namely the SAVE exit, the INTFVAL exit, and the
| MESSAGE exit, may now be specified on the EXITS parm as a batch exe-
| cution parameter, or on the STARTD function call.

| Modified/New APIs supported by the Binder
| The binder has the following new and changed programming interfaces:

| � The binder will accept an OpenEdition file name rather than a ddname on
| certain API calls and control statements. All binder files, other than the options
| or diagnostic files, may be allocated to OpenEdition files. OpenEdition path
| names are distinguished from ddnames because they begin with “/” or “./.”

| The APIs which accept the new OpenEdition file name specification are
| AUTOCALL, INCLUDE, and SETLIB.

| � IEWBIND (changed) - 4 new functions have been added to the API:

| – AUTOCall - Performs incremental autocall in OE, supporting the new
| AUTOCALL control statement.
| – IMPORT - Designates symbolic reference as importable
| – RENAME - Renames symbolic references from oldname to newname
| – DLLRename - Supports the DLL renaming utility, substituting member
| names in the Import/Export tables

| � IEWBUFF macro (changed) - Binder Data Buffer passed to the binder via the
| API has been changed to support the new level of program object (PM3), which
| has some new/changed fields in support of new function. This external
| mapping macro includes the specification of buffer version (i.e. program object
| version).

| – Default version continues to be Version 1 for all buffers, for compatibility.
| However, by specifying “Version(n)” on the IEWBUFF macro, a more recent

254 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| version of the buffer can be provided. Versions 1, 2, and 3 are currently
| possible.

| – Many of the new features can not be used with the older buffer versions.

| Extensions to the Program Object to Support DLLs
| � Import/Export table has been added to the PO structure for DLLs

| – The Import section includes the names of functions and variables (and the
| names of the DLL containing these as “exports”) that will be referenced by
| this PO.

| – The Export section includes the names of functions and variables in this
| PO (DLL) which are externalized outside, i.e. known to other POs.

| � A data area, IEWBLIT, was added to use for communication between Program
| Management and the LE/370 component.

| � New adcons are added to support C reentrancy

| � Deferred classes (i.e. the WSA) may now be included in the program object.

| Extensions to PDSE Directory Entry to Support DLLs
| Extensions are added to the PDSE directory entry and program object in support of
| C reentrant programs, C++ programs, and Dynamic Link Libraries.

| � A new “hidden” flag in the PDSE directory entry will be set for automatically
| generated aliases. Hidden aliases will be returned by DESERV (the directory
| service which supports PDSEs) unless explicitly requested not to. They will
| therefore be included in conventional directory listings and displays. The binder
| will always look at hidden aliases during autocall resolution.

| � Individual aliases may be marked with the “not executable” flag in the PDSE
| directory entry although the module itself is executable. This enables aliases to
| be used for autocall and symbol resolution in the binder, but not used for invo-
| cation. Hidden aliases will always be marked not executable.

| � A new “DLL enabled” flag in the PDSE directory entry will identify the module
| as being a candidate for dynamic linking. Both DLL members and DLL-enabled
| applications will have this flag set.

| � A new “C++ mangled name” flag in the PDSE directory entry will indicate if
| mangled names are being used for that PO. The binder will always demangle
| these names before printing them.

| DESERVices: Extensions to Support DLLs
| Directory Entry Services (DESERV) was externalized in DFSMS/MVS 1.3. It
| extends and/or replaces functions of BLDL for PDSE program libraries, however it
| can be issued against both PDS's and PDSEs. The application need not know the
| format of the program library being accessed. DESERV provides the ability to
| create, view, access and modify PDSE directory entries. Support was added for
| long names, bypass-LLA functions, a user exit, etc. in addition to new DLL
| support. (See DFSMS/MVS Macro Instructions for Data Sets). Extensions were
| added for DFSMS/MVS 1.4 as follows:

| � The DESERV FUNC=GET and GET_ALL interfaces are extended to support
| the HIDE parameter which requests that hidden aliases be returned.

 Appendix A. Summary of Considerations for the PM User 255

 PM User Considerations

| � The DESERV FUNC=GET_ALL interface is extended to support the
| CONCAT(ALL) parameter.

| � The DESERV FUNC=GET interface is extended to support the combination of
| SUBPOOL and AREAPTR parameters.

| New External Files Supported in DFSMS/MVS 1.4
| � The binder will create a “definition side file” if DYNAM(DLL) was specified as an
| option and there are any exported symbols.

| – The definition side file is a sequential file or partitioned member that con-
| tains IMPORT control statements.
| – The ddname defaults to SYSDEFSD, but may be overridden with the
| STARTD API call.
| – The side file may be used as input when linking another application which
| will import symbols from this one.

| � An autocall library may be a concatenation containing a mixture of traditional
| object libraries, load module libraries, PDSE program object libraries, and
| C370LIB-style libraries, or a single OpenEdition directory or archive file.

| – The binder will support autocall from OpenEdition archive files (a library of
| XOBJ files preceded by a special directory).

| – The binder will support autocall from C370LIB directories. C370LIB is an
| object module library which contains a special member named
| @@DC370$.

| Printed Output Extensions in DFSMS/MVS 1.4
| � Sysprint output includes “demangled” (user friendly) names instead of C++

| “mangled” names. This includes all messages, utility listings and other printed
| output of PM.

| � There is a new listing of imported and exported symbols.

| � New options are printed in the Module Summary Report.

| � In the module MAP additional information is added for descriptors.

| � There are two new tables associating original with renamed symbols and
| “mangled” with “demangled” names.

| Extensions to the Loader to support C Reentrancy and DLLs
| � The loader adds new functions to load and delete deferred classes of a
| program object. In this release deferred classes refer specifically to C's WSA
| (Writeable Static Area). These new functions resulted in the establishment of
| interfaces with LE/370 to support C constructed reentrancy, which requires the
| ability to load and delete WSAs as a class (deferred) of program object. A new
| set of control structures (including a template for WSA) are maintained in
| storage after load time.

| � The loader extends its support for staging of program objects in LLA, with the
| inclusion of deferred classes and DLLs.

| � The loader is extended to fully support the loading of DLL program objects from
| OpenEdition files, propagating program objects during a fork operation and for
| taking checkpoints.

256 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| OS/390 2.4 Dynamic LPA Support
| This function allows the addition and replacement of libraries and modules in LPA
| dynamically after the system has been initialized, which means PDSEs can now be
| candidates for LPA as well. (PDSEs have never been supported in LPA before
| because LPA was loaded before the environment required by PDSEs was initial-
| ized.) Now that PDSEs can be included in LPA, all program objects and more
| specifically, DLLs, can also be loaded into LPA.

| The DFSMS/MVS 1.4 loader provides support for OS/390 2.4 Dynamic LPA with a
| new Directed-Fetch function for invocation by the contents supervisor (CSV) com-
| ponent of MVS. This new function supports the loading of program objects
| (including modules with multi-segments and deferred classes) into LPA.

| Utilities/Services Extensions for DFSMS/MVS 1.4
| Several PM services are extended to provide support for DLLs and/or to support
| the change in the PDSE directory entry and program object formats. This support
| includes the following:

| � A new utility (IEWDLIST) is provided to list all member names in a PDSE
| program library, showing all the aliases and attributes for a member.

| � The existing C/C++ DLLRENAME utility is extended to invoke a new API func-
| tion for DLLs in PDSEs. This new binder API, DLLRENAM, is added to the
| binder to support the changing of member names in Import/Export tables,

| � The existing program management utilities/services - AMBLIST, IEWFDATA,
| IEWTPORT, and the TSO LINK/LOADGO commands - have been updated to
| support changes in the PDSE directory entry, program object, and the new
| binder options.

| Migrating FROM the Prelinker and TO DLLs

| Migrating from the Prelinker to Binder
| Users must ensure that their JCL and the cataloged procedures they are invoking
| are changed to eliminate the prelinker step.

| Note: The C89 command in OpenEdition will bypass the prelinker in OS/390 V2.4
| and compilers such as the IBM C/C++ compiler may provide new cataloged proce-
| dures which will use the binder for prelinker functions.

| The following considerations apply if you are converting JCL yourself. It is
| assumed that you have already performed any necessary conversion from the
| linkage editor to the binder.

| � The members of the SYSLIB concatenation used in the prelink step should be
| concatenated before the SYSLIB members used in the bind step.

| � Specify CASE(MIXED) as a binder option to preserve case sensitivity.

| � The contents of the prelinker SYSIN may be used as the binder SYSLIN or
| concatenated with it, or explicitly included by a binder INCLUDE control state-
| ment.

| � SYSLMOD must be allocated to a PDSE or an OE file.

 Appendix A. Summary of Considerations for the PM User 257

 PM User Considerations

| � If SYSDEFSD was being used for the prelinker step, it should be added to the
| bind step.

| � If a DLL-enabled module is to be produced, DYNAM(DLL) must be specified.
| The prelinker produced a DLL-enabled module if the input XOBJ was
| DLL-enabled. The binder requires an explicit directive.

| � If the prelinker UPCASE option was being used, it may be specified as a binder
| option. However it may not be necessary since the binder provides better
| support for long and mixed case names.

| � Prelinker control statements, including RENAME and IMPORT, may be moved
| from the prelink step to the bind step.

| Restrictions and Incompatibilities Migrating from the Prelinker
| � You must continue to use the prelinker if your target library is a PDS or if the
| output module will be executed on an OS/390 release earlier than V2.4.

| � If the prelinker is used at all, then all object modules requiring prelinking must
| be processed together by the prelinker. In other words you cannot combine
| object modules created by the prelinker or load modules/program objects con-
| taining such together with XOBJ modules as input to a single bind.

| � The prelinker allows names to be multiply defined, once for function names and
| once for variable names. The binder will use the first occurrence of a given
| name without regard to whether it is code or data.

| � The binder does not support the version of the LIBRARY control statement
| which was used by the prelinker to trigger automatic library call. The unsup-
| ported version is the one whose syntax is “LIBRARY ddname.” This is being
| replaced by the new binder AUTOCALL control statement.

| � Code generated with the C/C++ compiler option IPA(NOLINK,NOOBJECT)
| should not be given as input to the binder.

| � External names must not exceed 1024 bytes in length. If you are using very
| long function names in C++ the compiler may add additional bytes to the end of
| the name. This may cause the name presented to the binder to exceed the
| limits if the original name is 1000 bytes or more in length.

| Migration of Applications to DLL Support
| Migration of applications to DLLs require that the user:

| � Identify those modules which will be dynamically linked

| � Recompile the DLL modules with #pragma export or the EXPORTALL option
| (in the C language)

| � Bind those DLLs into the PDSE dynamic link library

| � Remove the imported modules from the static bind library

| � Rebind the application

| Note: See the OS/390 C/C++ Programming Guide , SC09-2362, for guidance on
| how to create DLLs and dynamic link libraries.

258 DFSMS/MVS V1R4 Program Management

 PM User Considerations

| Migration of Binder Users to DFSMS/MVS 1.4
| Assuming 5 classes of Binder users, they could prepare as follows:

| � General Users : Users not planning to use DLL libraries need make no
| changes. If linking C/C++ programs they could simplify by removing the
| prelinker step and using PDSEs or OpenEdition files as their program library.

| � System Programmers : They may need to update the installation defaults
| module. If installing DLLs via SMP/E they need to be familiar with SYSDEFSD
| files. They also may choose to add PDSE program libraries to LPA taking
| advantage of the facilities of Dynamic LPA.

| � Utility Writers/Vendors : They may wish to process the new data classes
| added with this release or make use of the new APIs.

| � Compiler Writers : If a language intends to support DLLs, then modifications
| will be needed both in the compiler and in the language runtime support. In
| addition, the language must be LE-enabled. The compiler will need to provide
| descriptors and to provide proper code sequences to invoke loader services
| and to access data or variables via descriptors rather than by direct addressing.

| � DLL Providers and Users :

| – DLL users will generally use the side decks of IMPORT statements pro-
| vided by the DLL provider, which must use the IMPORT control statement

| – DYNAM(DLL) must be specified if the program object is to be a DLL or use
| DLLs.

| – A DD-statement for SYSDEFSD must be provided if the application exports
| any symbols.

| – A compiler which supports DLLs must be used.

| Installation Considerations with DFSMS/MVS 1.4 and OS/390 2.4
| � With the implementation of Dynamic LPA support in OS/390 2.4, PDSE
| program objects, and therefore DLLs, may reside in LPA. (See the OS/390 2.4
| Dynamic LPA documentation for more detail on how to include PDSEs in LPA.)

| � Installation default values for PM options may be specified at an installation
| level by modifying binder module IEWBODEF and relinking it with IEWBLINK
| into SYS1.LINKLIB. All options specified here may be overridden at the job
| step level.

 Appendix A. Summary of Considerations for the PM User 259

 PM User Considerations

260 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

Appendix B. Using the Linkage Editor and Batch Loader

All of the services of the linkage editor and batch loader can be performed by the
program management binder. We recommend that you convert to exclusive use of
the binder. However, if you do need to use the linkage editor or batch loader, most
of the information in this document is applicable with a few differences. This
appendix describes those differences.

Creating Programs from Source Modules

AMODE and RMODE Differences
The differences in linkage editor processing of AMODE and RMODE values are:

� A value of MIN for AMODE is not supported.

� If only one value, either AMODE or RMODE, is specified on the MODE control
statement or on the AMODE and RMODE options, the other value is implied
according to the following table:

� When building an overlay format load module, the AMODE and RMODE values
in the ESD data of the output module are discarded and can be restored only
by including the object modules carrying those values.

� ESD records which specify AMODE(ANY) RMODE(ANY) are handled differ-
ently:

– If the entry point external symbol is marked AMODE ANY/RMODE ANY,
associated entry point attributes are assigned according to the following
hierarchy:

- If the load module contains one or more CSECTs marked AMODE 24,
the linkage editor assigns an AMODE of 24 to all entry points that have
ESD entries marked AMODE ANY/RMODE/ANY.

- If the load module has an RMODE of 24 and it contains no CSECTS
marked AMODE 24, the linkage editor assigns an AMODE of ANY to
these entry points.

- If the load module RMODE is ANY, the linkage editor assigns an
AMODE of 31 to these entry points.

Value Specified Value Implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see note below

RMODE=ANY AMODE=31

Note:

If only an RMODE of 24 is specified, no overriding AMODE value is assigned. Instead, the
AMODE value in the ESD data for the main entry point, a true alias, or an alternate entry
point is used in generating its respective directory entry.

 Copyright IBM Corp. 1991, 1997 261

 Using Linkage Editor and Loader

Invoking the Linkage Editor and Batch Loader
You can invoke the linkage editor and batch loader with JCL, under TSO, or
through a program.

Invoking the Linkage Editor and Batch Loader with JCL
The linkage editor and batch loader programs can be invoked on the PGM param-
eter of the JCL EXEC statement.

The linkage editor is invoked using the program name HEWLKED. The linkage
editor can also be invoked by the following aliases: HEWLF064, IEWLF440,
IEWLF880, and IEWLF128. This program link-edits a load module and stores it in
a partitioned data set library.

The batch loader is invoked using the program name HEWLDIA. This program
link-edits a load module, loads it into virtual storage, and executes it.

SYSLIN Data Sets
The maximum block size of data sets defined in the SYSLIN definition is 3200
bytes. The linkage editor does not support load modules or program objects in the
primary input. The batch loader does not support program objects in the primary
input.

SYSPRINT and SYSLOUT Data Sets
The DCB parameters for SYSPRINT and SYSLOUT need not be specified. If they
are specified, they must be RECFM=FA or RECFM=FBA and LRECL=121, and the
BLKSIZE parameter is any multiple of 121 to a maximum of 4840 bytes.

See “Invoking the Binder with JCL” on page 29 for information on using JCL.

SYSUT1 Data Set
In addition to the required data sets described in “Binder DD Statements” on
page 32, the linkage editor uses another data set to hold data records during proc-
essing. The linkage editor places intermediate data in this data set when storage
allocated for input data or certain forms of out-of-sequence text is exhausted.

A SYSUT1 DD statement is required to describe this data set. It must be a
sequential data set assigned to a single direct access storage device. Space must
be allocated for this data set, but the data set characteristics are supplied by the
linkage editor.

Message IEW0294 will be issued if you specify more than one volume.

See DFSMS/MVS Planning for Installation for a list of the direct access storage
devices that can be used for this data set.

Included Data Sets
If an included data set contains another INCLUDE statement, the specified module
is processed but any data following the INCLUDE statement is not processed.

262 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

Concatenated Data Sets
All of the data sets in a concatenated list must have the same record character-
istics (format, record length). Concatenated data sets may have differing block
sizes and be in any order of blocksize.

All concatenated call libraries must be of the same type (object modules or load
modules). A call library cannot contain program objects.

Invoking the Linkage Editor from a Program
General-use programming interface

You can pass control to the linkage editor from a program using the LINK,
ATTACH, LOAD, CALL, and XCTL macros using either 24-bit or 31-bit addressing.
You must supply a save area address in register 13.

The linkage editor is invoked using the HEWLKED program name, or one of these
aliases: HEWLF064, IEWLF440, IEWLF880, or IEWLF128.

The use of these macros is identical to usage for the binder with the exception of
the ddname list passed as a parameter on LINK, ATTACH, CALL, and XCTL calls.

The sequence of the 8-byte entries in the ddname list for the linkage editor is as
follows:

Entry Alternate Name For:
1 SYSLIN
2 Member name (The name under which the output load module is stored in

the SYSLMOD data set. This entry is used if the name is not specified on
the SYSLMOD DD statement or if there is no NAME control statement.)

3 SYSLMOD
4 SYSLIB
5 Not applicable
6 SYSPRINT
7 Not applicable
8 SYSUT1
9-11 Not applicable
12 SYSTERM

When the linkage editor completes processing, a return code is returned in register
15 (see “Linkage Editor Return Codes” on page 288 for a list of linkage editor
return codes).

Invoking the Batch Loader from a Program
You can pass control to the batch loader from a program using the LINK, ATTACH,
LOAD, CALL, and XCTL macros using either 24-bit or 31-bit addressing. You must
supply a save area address in register 13.

 Appendix B. Using the Linkage Editor and Batch Loader 263

 Using Linkage Editor and Loader

The batch loader can be invoked at three different entry points to perform the fol-
lowing services:

HEWLDIA
Link-edits a load module, loads it into virtual storage, and executes it.

HEWLDI
Link-edits a load module, loads it into virtual storage, and identifies it.
HEWLDI returns the address of an 8-character module name in register 1.
This name can be used to invoke the loaded program using a LINK or
ATTACH macro.

HEWLD
Link-edits a load module and loads it into virtual storage, but does not iden-
tify it. HEWLD returns the entry point of the loaded module in register 0 (the
high order bit is on for AMODE). Register 1 points to two fullwords. The
first points to the beginning of storage occupied by the loaded program, and
the second contains the length of the loaded program.

The LINK, ATTACH, LOAD, and XCTL macros are described in OS/390 MVS
Assembler Services Guide. The use of these macros is identical to usage for the
binder, with the exception of the ddname list passed as a parameter on LINK,
ATTACH, CALL, and XCTL calls.

The sequence of the 8-byte entries in the ddname list for the batch loader is as
follows:

Entry Alternate Name For:
1 SYSLIN
2 not applicable
3 not applicable
4 SYSLIB
5 not applicable
6 SYSLOUT
7-11 not applicable
12 SYSTERM

The batch loader generates a return code when it completes its execution and
returns it in register 15. See “Batch Loader Return Codes” on page 288 for more
information on batch loader return codes.

End of General-use programming interface

Invoking the Linkage Editor and Batch Loader Under TSO
You also use the LINK command to invoke the linkage editor and the LOADGO
command to invoke the batch loader under TSO. If you specify the NOBINDER
option on either of these commands, the linkage editor or batch loader will be
invoked rather than the binder.

264 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

Editing a Control Section

Replacing Control Sections
A restriction applies when you request the linkage editor to perform both a
CHANGE and a REPLACE operation on the same included module. This situation
occurs when you delete one or more control sections and rename references to
symbols within a removed control section to some other external symbol all within
the scope of a single INCLUDE. When you change more than one entry name
within a removed control section to a single new external symbol, you must specif-
ically include the control section that resolves the new external symbol prior to the
CHANGE operation.

If a replaced control section contains unresolved external references and the
replacing control section does not, you must either specify the NCAL parameter,
use the REPLACE statement to delete the unresolved external references, or use
the LIBRARY statement to mark the references for restricted no-call or never-call.

Deleting an External Symbol
If you use the linkage editor to delete a control section that contains any unresolved
external references, those references are NOT removed from the external symbol
dictionary.

If the input does not have an INCLUDE statement or object module after a
REPLACE statement that is to delete a CSECT, and there are external references
to be resolved from SYSLIB, the linkage editor causes the delete request to
operate on the first module from SYSLIB and deletes the control section.

Control Statement Reference

Continuing a Statement
You indicate that a control statement line is continued onto the next line by placing
a nonblank character in column 72 of the line. The continued statement must begin
in column 16 of the next line.

 ALIAS Statement
No more than 64 alias names can be assigned to one load module.

 CHANGE Statement
If a CHANGE statement is not followed by any included module, the linkage editor
applies the change to the first module, if any, brought in during automatic library
call.

 ENTRY Statement
| If you provide more than one ENTRY statement, the main entry point specified on
| the last statement is used.

 Appendix B. Using the Linkage Editor and Batch Loader 265

 Using Linkage Editor and Loader

 EXPAND Statement
The EXPAND statement is placed immediately following the INCLUDE statement.
The maximum number of bytes that can be added to any indicated section is 4095.

 IDENTIFY Statement
An IDENTIFY statement can be continued. A whole operand must appear on a
single line, and at least one operand must appear on each line of a continued
statement.

Placement: The linkage editor requires that the IDENTIFY statement follow the
module containing the control section to be identified or the INCLUDE statement
specifying the module.

 NAME Statement
If a name is not specified on a NAME statement, the name TEMPNAME will be
assigned to the module.

 ORDER Statement
If the same common area or control section is listed on more than one ORDER
statement, the linkage editor uses the sequence listed on the first statement. The
linkage editor ignores all subsequent occurrences of the name and the balance of
the ORDER statement on which the name appears except when the occurrence is
the last operand on one ORDER statement and the first operand on the next.

 REPLACE Statement
Placement: If the REPLACE statement is the last control statement in the SYSLIN
data set, and there are unresolved external references to be resolved from SYSLIB,
the linkage editor causes the REPLACE service to operate on the first module from
SYSLIB by an automatic library call.

When a control section containing unresolved external references is deleted, the
unresolved references remain in the CESD.

When some but not all control sections of a separately assembled module are to be
replaced, the linkage editor causes A-type address constants that refer to a deleted
symbol to be incorrectly resolved unless the entry name is at the same displace-
ment from the origin in both the old and the new control sections.

If no INCLUDE statement follows the REPLACE statement, one module may be left
out during automatic library call. Message IEW0132 is issued.

Processing and Attribute Options Reference
The options described in Chapter 7, “Binder Options Reference” on page 101 also
apply to the linkage editor and batch loader except as noted here.

266 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

Unsupported Binder Options
The linkage editor and batch loader do not support these binder options:

| � ALIASES
 � CASE

| � DYNAM
 � EDIT
 � FETCHOPT
 � LINECT
 � MAXBLK
 � MSGLEVEL
 � OPTIONS

| � UPCASE
 � REUS(value)
 � SSI
 � STORENX
 � WKSPACE

LIST: Listing Control
Specify LIST or NOLIST. The form LIST=value is not supported by the linkage
editor and batch loader. When the LIST option is specified, the control statements
are listed in either the SYSPRINT, SYSLOUT, or SYSTERM data set.

MAP and XREF
When the XREF option is specified, the linkage editor produces a cross-reference
table of the output load module. The cross-reference table includes a module map;
therefore, both XREF and MAP need not be specified in the same job step.

 Reusability
The form REUS(value) is not supported by the linkage editor. Use the single
keyword form REUS|NOREUS|RENT|NORENT|REFR|NOREFR to code the reusa-
bility option. See “REUS: Reusability Options” on page 120 for further information
on reusability attributes.

SIZE: Space Specification
value1

For the linkage editor, the minimum value is 96KB (98304 bytes) and the
maximum value is 9999KB (approximately 10MB). All of this storage is below
the 16 MB line.

value2
The minimum value is the larger of 6KB (6144) or the length of the largest input
text record. The maximum value is the length of the output load module plus
4096 bytes if the length of the output module is equal to or greater than 40KB.

The storage specified by value2 is part of the total allocation specified by
value1.

 Appendix B. Using the Linkage Editor and Batch Loader 267

 Using Linkage Editor and Loader

 Not-Executable Attribute
Unlike the binder, the linkage editor will replace an executable module with a not-
executable version. All other conditions, such as the replace option on the NAME
statement and the LET option, must allow for storing of the module.

Incompatible Processing and Attribute Options
Some processing and attribute options are incompatible: Some options cannot be
active at the same time with others. In Figure 66, an X at an intersection marks a
pair of incompatible options. When both are specified, the option that appears
higher in the list is used. For example, if both OVLY and RENT are specified, the
module will be in an overlay structure but is not reenterable.

┌──────

│ OVLY

├──┬──────

│X │ RENT

├──┼──┬──────

│X │X │ REUS

├──┼──┼──┬──────

│X │ │ │ REFR

├──┼──┼──┼──┬──────

│X │ │ │ │ SCTR

├──┼──┼──┼──┼──┬──────

│X │ │ │ │ │ AMODE

├──┼──┼──┼──┼──┼──┬──────

│X │ │ │ │ │ │ RMODE

├──┼──┼──┼──┼──┼──┼──┬──────

│ │ │ │ │ │ │ │ TEST

├──┼──┼──┼──┼──┼──┼──┼──┬───────

│ │ │ │ │ │ │ │ │ XREF

├──┼──┼──┼──┼──┼──┼──┼──┼──┬───────

│ │ │ │ │ │ │ │ │ │ MAP

├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┬───────

│ │ │ │ │ │ │ │X │X │X │ NE

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──────────

Figure 66. Incompatible Processing and Attribute Options. Options not shown here can be
specified in any combination.

Linkage Editor Requirements
This section describes the amount of virtual storage the linkage editor requires and
its record-processing capacities. See DFSMS/MVS Planning for Installation for the
latest device support information.

Virtual Storage Requirements
The approximate minimum storage requirement and the capacity of the linkage
editor program are described in Figure 67. To increase the capacity for processing
external symbol dictionary records, intermediate text records, relocation dictionary
records, and identification records, increase value1 or decrease value2 of the SIZE
option. Output text record length can be increased by increasing the SIZE option
values, but in no case may the record length ever exceed the track length for the
device or 32KB.

268 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

The number of overlay segments and regions that can be processed is not affected
by increasing the available storage.

For the CESD, the number of entries permitted can be computed by subtracting,
from the maximum number given in Figure 67, one entry for each of the following:

� A ddname specified in LIBRARY statements

� A ddname specified in INCLUDE statements

� An ALIAS statement

� A symbol in REPLACE or CHANGE statements that are in the largest group of
these statements preceding a single object module in the input to the linkage
editor

� The segment table (SEGTAB) in an overlay program

� An entry table (ENTAB) in an overlay program.

To compute the number of intermediate text records that will be produced during
processing of either program, add one record for each group of x bytes within each
control section, where x is the record size for the intermediate data set. The
minimum value for x is 1KB; a maximum is chosen depending on the amount of
storage available to the linkage editor and the devices allocated for the intermediate
and output data sets.

The number of intermediate text records that can be handled by a linkage editor
program is less than the maximums given in Figure 67 if the text of one or more
control sections is not in sequence by address in the input to the linkage editor.

The total length of the data fields of the CSECT identification records associated
with a load module cannot exceed 32KB. To determine the number of bytes of
identification data contained in a particular load module, use the following formula:

SIZE = 269 + 16A + 31B + 2C + I(n + 6)

Figure 67. Linkage Editor Capacities for Minimal SIZE Values (96KB, 6KB)

Function Capacity

Virtual storage allocated 96KB

Maximum number of entries in CESD 558

Maximum number of intermediate text records 372

Maximum number of RLD records (relocatable address constants) 192

Maximum number of segments per program 255

Maximum number of overlay regions per program 4

Maximum blocking factor for input object modules (number of 80-column card
images per physical record)

5

Maximum blocking factor for SYSPRINT output (number of 121-character
logical records per physical record)

5

Output text record length, for the devices supported by this system 3KBñ

Note:

ñ The maximum output text record length is achieved when value2 of the SIZE parameter
is at least twice the record length size.

 Appendix B. Using the Linkage Editor and Batch Loader 269

 Using Linkage Editor and Loader

where:

A = the number of compilations or assemblies by a processor supporting CSECT
identification that produced the object code for the module.

B = the number of preprocessor compiler compilations by a processor supporting
CSECT identification that produced the object code for the module.

C = the number of control sections in the module with END statements that
contain identification data.

I = the number of control sections in the module that contain user-supplied data
supplied during link-editing by the optional IDENTIFY control statement.

n = the average number of characters in the data specified by IDENTIFY control
statements.

Notes:

1. The size computed by the formula includes space for recording up to 19
AMASPZAP modifications. When 75% of this space has been used, a new
251-byte record is created the next time the module is reprocessed by the
linkage editor.

2. To determine the approximate number of records involved, divide the computed
size of the identification data by 256.

Example : A module contains 100 control sections produced by 20 unique compila-
tions. Each control section is identified during link-editing by 8 characters of user
data specified by the IDENTIFY control statement. The size of the identification
data is computed as follows:

A = 20
I = 100
n = 8

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control statements is omitted,
the size can be reduced considerably as shown in the following computation:

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to other segments
lower in its path can never exceed 340. To compute the maximum number of
downward calls allowed, subtract 12 from the SYSLMOD record size, then divide
the difference by 12. Examples of maximum downward calls are 84 for a
SYSLMOD record size of 1024 bytes and 340 for a SYSLMOD record size of 6144
bytes.

270 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

Batch Loader Requirements
The batch loader can require virtual storage space for the following items:

� Batch loader code
� Data management access methods
� Buffers and tables used by the batch loader (dynamic storage)
� Loaded program (dynamic storage).

Region size includes all four of these items; the SIZE option refers to the last two
items.

For the SIZE option, the minimum required virtual storage is 4KB plus the size of
the loaded program. This minimum requirement grows to accommodate the extra
table entries needed by the program being loaded. For example, Fortran requires
at least 3KB plus 4KB plus the size of the loaded program, and PL/I needs at least
8KB plus 4KB plus the size of the loaded program. Buffer number (BUFNO) and
block size (BLKSIZE) could also increase this minimum size. Figure 68 shows the
appropriate storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual storage is avail-
able.

All or part of the storage required is obtained from user storage.

Figure 68. Batch Loader Virtual Storage Requirements

Consideration

Approximate Virtual Storage
Requirements (in Bytes)

Comments

Data Management 6KB BSAM

Object Module Buffers and
DECBs

BUFNO × (BLKSIZE + 24) Concatenation of different BLKSIZE and
BUFNO must be considered. (Minimum
BUFNO=2)

Load Module Buffer and
DECBs

304

SYSTERM DCB Buffers
and DECBs

312 Allocated if TERM option is specified

SYSLOUT Buffers and
DECBs

BUFNO × (BLKSIZE + 24) Buffer size rounded up to integral number
of double words. (Minimum BUFNO=2)

Size of program being
loaded

Program size Program size is restricted only by avail-
able virtual storage

Each external relocation
dictionary entry

8

Each external symbol 20

Largest ESD number 4n (n is the largest number of ESDs in
any input module)

Allocated in increments of 32 entries

Fixed Loader Table Size 1260 Subtract 88 if NOPRINT is specified

Condensed Symbol Table 12n (n is the total number of control
sections and common areas in the
loaded program)

| Built only if you invoke the binder under
| TSO, and space is available.

System Requirements 4000

 Appendix B. Using the Linkage Editor and Batch Loader 271

 Using Linkage Editor and Loader

Interpreting Linkage Editor Output

 Diagnostic Output
Diagnostic information is written to the diagnostic output data set which is defined
by a SYSPRINT DD statement. The diagnostic report consists of a header and
linkage editor messages. There are two types of messages: module disposition
and error/warning. OS/390 MVS System Messages, Vol 4 (IEC-IFD) contains
descriptions of the error/warning messages.

Output Listing Header
The output listing header includes:

� The time, day of the week, and date that the link-edit job was run.

� The job name you have specified and the job step name.

� The invocation parameters you have specified.

� The amount of working storage used and the output buffer size. These two
values are shown as:

 ACTUAL SIZE=(value1,value2)

 where:

value1 = the actual amount of working storage that the linkage editor used
and not the value you requested.

value2 = the actual output buffer size and not the value you requested.

� The name of the SYSLMOD data set and its volume.

Invalid options and attributes are replaced by INVALID in the output listing header.
If incompatible attributes are specified, additional messages are generated.

Module Disposition Messages
Module disposition messages are generated for each load module produced.
There are two groups of messages. The first group of disposition messages
describes the handling of the load module. These messages are:

� member name ADDED AND HAS AMODE addressing mode

� member name REPLACED AND HAS AMODE addressing mode

� member name DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS
AMODE addressing mode

In this case, the replacement function was specified, but the member did not
exist in the data set; the module is added to the data set using the member
name given.

� alias name IS AN ALIAS AND HAS AMODE addressing mode

� MODULE HAS BEEN MARKED NOT EXECUTABLE.

� LOAD MODULE HAS RMODE residence mode

� AUTHORIZATION CODE IS authorization code.

The second group of module disposition messages is generated when reenterable
(RENT), reusable (REUS), or refreshable (REFR) linkage editor options have been

272 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

specified for the module. A message indicates whether the load module has been
marked reenterable or not reenterable, reusable or not reusable, refreshable or not
refreshable, depending on the option or options used.

The RENT/REUS/REFR message consists of MODULE HAS BEEN MARKED, fol-
lowed by the attributes assigned. The following messages are examples of some
possible combinations:

� MODULE HAS BEEN MARKED REFRESHABLE.
� MODULE HAS BEEN MARKED NOT REFRESHABLE.
� MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.
� MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable, only the
MODULE HAS BEEN MARKED NOT EXECUTABLE message appears; no attri-
bute messages are generated.

 Error/Warning Messages
Certain conditions that are present when a module is being processed can cause
error or warning messages to be printed. These messages contain a message
code and message text. If an error is encountered during processing, the message
code for that error is printed with the applicable symbol or record in error. After
processing is completed, the diagnostic message associated with that code is
printed.

The error warning messages have the following format:

IEW0mms message text

where:

IEW0 indicates a linkage editor message

mm is the message number

s is the severity code, and may be one of the following values:

1 Indicates a condition that may cause an error during execution of the
output module. A module map or cross-reference table is produced if
specified by you. The output module is marked executable.

2 Indicates an error that could make execution of the output module impos-
sible. Processing continues. When possible, a module map or a cross-
reference table is produced if specified by you. The output module is
marked not executable, unless the LET option is specified on the EXEC
statement.

3 Indicates an error that will make execution of the output module impos-
sible. Processing continues. When possible, a module map or a cross-
reference table is produced if specified by you. The output module is
marked not executable.

4 Indicates an error condition from which no recovery is possible. Proc-
essing terminates. The only output is diagnostic messages.

Note: A special severity code of zero is generated for each control statement
printed as a result of the LIST option. Severity zero does not indicate an error
warning condition.

 Appendix B. Using the Linkage Editor and Batch Loader 273

 Using Linkage Editor and Loader

The highest severity code encountered during processing is multiplied by 4 to
create a return code that is placed in register 15 at the end of processing. This
return code can be tested to determine whether processing is to continue.

message text contains combinations of the following:

� The message classification (either error or warning)

� Cause of error

� Identification of the symbol, segment number (when in overlay), or input item to
which the message applies

� Instructions to the programmer

� Action taken by the linkage editor.

OS/390 MVS System Messages, Vol 4 (IEC-IFD) contains a complete list of the
linkage editor error and warning messages.

Sample Diagnostic Output
Figure 69 shows the format of the diagnostic output for the linkage editor. No
optional output was requested other than the list of control statements.

A DFSMS/MVS VERSION 1 RELEASE 1 LINKAGE EDITOR 16:52:4ð TUE DEC ð1, 1992

 JOB MAINRUN STEP LINKEDIT

INVOCATION PARAMETERS - LET,NCAL,XREF,LIST

 ACTUAL SIZE=(31744ð,86ð16)

OUTPUT DATA SET USER.LOADLIB IS ON VOLUME SYSð86

B IEWðððð NAME BBBBBBBB(R)

 IEWð461 CCCCCCCC

 IEWð461 BASEDUMP

C \\ BBBBBBBB ADDED AND HAS AMODE 24

\\ LOAD MODULE HAS RMODE 24

\\ AUTHORIZATION CODE IS ð.

DIAGNOSTIC MESSAGE DIRECTORY

D IEWð461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS SPECIFIED

Figure 69. Diagnostic Messages Issued by the Linkage Editor

The figures on the left side of Figure 69 indicate the portion of the diagnostic
output being described.

A Is the output listing header. It contains a time and date stamp, invocation
parameters specified by you, storage and buffer sizes, and the name of the
SYSLMOD data set and its volume. In this example, MAINRUN and LINKEDIT
are the user-specified job name and step name, respectively.

B Is a list of control statements used (IEW0000) and the message codes
(IEW0461) for error/warning conditions discovered during processing. For
error/warning message codes, the symbol in error, if necessary, is also listed
(CCCCCCCC and BASEDUMP).

C Is a module disposition message indicating that the output module (BBBBBBBB)
has been added to the output module data set. The addressing and residency
modes and the module authorization code are listed.

274 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

D Is the diagnostic message directory that contains the text of the error codes
listed in item B.

 Optional Output
In addition to error/warning and disposition messages, the linkage editor can
produce diagnostic output as requested by you. This optional output includes a
control statement listing, a module map, and a cross-reference table.

Control Statement Listing
If the LIST option is specified on the EXEC statement, a listing of all linkage editor
control statements is produced. For each control statement, the listing contains a
special message code, IEW0000, followed by the control statement. Item B in
Figure 69 on page 274 contains an example of a control statement listing.

 Module Map
If the MAP option is specified on the EXEC statement, a module map of the output
load module is produced. The module map shows all control sections in the output
module and all entry names in each control section. Named common areas are
listed as control sections.

For each control section, the module map indicates its origin (relative to zero) and
length in bytes (in hexadecimal notation). For each entry name in each control
section, the module map indicates the location at which the name is defined.
These locations are also relative to zero.

If the module is not in an overlay structure, the control sections are arranged in
ascending order according to their origins. An entry name is listed with the control
section in which it is defined.

If the module is an overlay structure, the control sections are arranged by segment.
The segments are listed as they appear in the overlay structure, top to bottom, left
to right, and region by region. Within each segment, the control sections and their
corresponding entry names are listed in ascending order according to their
assigned origins. The number of the segment in which they appear is also listed.

In any module map, the following are identified by a dollar sign:

� Blank common area
� Private code (unnamed control section)
� For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not have an origin of
zero, the linkage editor generates a one-byte private code (unnamed control
section) as the first text record. This private code is deleted in any subsequent
reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic library call
is identified by an asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address of
the main entry point. The entry address is followed by the total length of the
module in bytes; in the case of an overlay module, the length is that of the longest
path. Pseudoregisters, if used, also appear at the end of the module map; the
name, length, and displacement of each pseudoregister are given.

 Appendix B. Using the Linkage Editor and Batch Loader 275

 Using Linkage Editor and Loader

Figure 70 on page 276 contains a module map and cross-reference listing with
four control sections. There are three named control sections (ABC00, ABCSUB1,
and ABCSUB2) and one unnamed control section (designated by $PRIVATE).
Control sections ABCSUB1 and ABCSUB2 were obtained from a call library.
Control section ABCSUB1 also has two additional entry points. The entry point for
control section ABCSUB2 is named ABCENT2.

CROSS REFERENCE TABLE

 CONTROL SECTION ENTRY

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

$PRIVATE ð 8

 ABCðð ð8 1ðð4

 ABCSUB1\ 1ððC DE

ABCSUB1 1ððC ABCSUB1A 1ð16 ABCHLP1 1ð8E

 ABCSUB2\ 1ðE8 767

 ABCENT2 1ðE8

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

 31F ABCSUB1 ABCSUB1 325 ABCSUB1A ABCSUB1

 354 ABCENT2 ABCSUB2 36ð ABCHLP1 ABCSUB1

 364 ABCSUB1A ABCSUB1

 ENTRY ADDRESS ð8

 TOTAL LENGTH 185ð

Figure 70. Linkage Editor Module Map and Cross-Reference Table

 Cross-Reference Table
If the XREF option is specified on the EXEC statement, a cross-reference table is
produced. The cross-reference table consists of a module map and a list of cross-
references for each control section. Each address constant that refers to a symbol
defined in another control section is listed with its assigned location, the symbol
referred to, and the name of the control section in which the symbol is defined.
When control sections are compiled together, and simple address constants are
used to refer from one control section to another (instead of using external symbols
and entry names), the control section name is listed as the symbol referred to.

For overlay programs, this information is provided for each segment; the number of
the segment in which the symbol is defined is also provided.

If a symbol is unresolved after processing by the linkage editor, it is identified by
$UNRESOLVED in the list. However, if an unresolved symbol is marked by the
never-call function (as specified on a LIBRARY control statement), it is identified by
$NEVER-CALL. If an unresolved symbol is a weak external reference, it is identi-
fied by $UNRESOLVED(W).

Figure 70 on page 276 includes a cross-reference table of the address constants
in program ABC00.

Interpreting Batch Loader Output
The batch loader output consists of a collection of diagnostic and error messages
and an optional storage map of the loaded program. The output is produced in the
data set defined by the SYSLOUT DD and SYSTERM DD statements. If these
statements are omitted, no output is produced.

276 DFSMS/MVS V1R4 Program Management

 Using Linkage Editor and Loader

SYSLOUT output includes a heading, and the list of options and defaults requested
through the PARM field of the EXEC statement. The SIZE stated is the size
obtained, and not necessarily the size requested in the PARM field. Error mes-
sages are written when the errors are detected. After processing is complete, an
explanation of the error is written. OS/390 MVS System Messages, Vol 4
(IEC-IFD) lists the batch loader error messages.

SYSTERM output includes only numbered warning and error messages. These
messages are written when the errors are detected. After processing is complete,
an explanation of each error is written.

The storage map includes the name and absolute address of each control section
and entry point defined in the loaded program. Each map entry marked with an
asterisk (*) comes from the data set specified on the SYSLIB DD statement. Two
asterisks (**) indicate the entry was found in the link pack area; three asterisks (***)
indicate the entry comes from text that was preloaded by a compiler. The TYPE
column indicates what each entry on the map is used for: SD=control section,
LR=label reference, and PR=pseudoregister.

The map is written as the input to the batch loader is processed, so all map entries
appear in the same sequence in which the input ESD items are defined. The total
size and storage extent of the loaded program are also included. For PL/I pro-
grams, a list is written showing pseudoregisters with their addresses assigned rela-
tive to zero. Figure 71 on page 278 shows an example of a module map. The
batch loader issues an informational message when the loaded program terminates
abnormally.

 Appendix B. Using the Linkage Editor and Batch Loader 277

 Using Linkage Editor and Loader

NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR

SAMPL2B SD 161Eð SAMPL2BA SD 16EC8 IHEMAIN SD 17CF8 IHENTRY SD 17Dðð IHESPRT SD 17D1ð

SYSIN SD 17D48 IHEVQC \ SD 17D8ð IHEVQCA \ LR 17D8ð IHEVQB \ SD 17FD8 IHEVQBA\ LT 17FD8

IHEDIA \ SD 183Cð IHEDIAA \ LR 183Cð IHEIAB \ LR 183C2 IHEVPE \ SD 186ð8 IHEVPEA\ LR 186ð8

IHEVPA \ SD 1887ð IHEVPAA \ LR 1887ð IHEVFC \ SD 189Dð IHEVFCA \ LR 189Dð IHEVPC \ SD 189F8

IHEVPCA \ LR 189F8 IHEVFE \ SD 18BE8 IHEVFEA \ LR 18BE8 IHEVSC \ SD 18Cð8 IHEVSCA\ LR 18Cð8

IHEDNC \ SD 18CB8 IHEDNCA \ LR 18CB8 IHEDOA \ SD 18F3ð IHEDOAA \ LR 18F3ð IHEDOAB\ LR 18F32

IHEDMA \ SD 19ð1ð IHEDMAA \ LR 19ð1ð IHEVFD \ SD 191ð8 IHEVFDA \ LR 191ð8 IHEVFA \ SD 1916ð

IHEVFAA \ LR 1916ð IHEVPB \ SD 19248 IHEVPBA \ LR 19248 IHEXIS \ SD 193Fð IHEXISO\ LR 193Fð

IHEIOB \ SD 19488 IHEIOBA \ LR 19488 IHEIOBB \ LR 1949ð IHEIOBC \ LR 19498 IHEIOBD\ LR 194Að

IHESARC \ LR 1A9CB IHESADD \ LR 1A9DE IHESAFF \ LR 1AA18 IHEPRT \ SD 1AB7ð IHEPRTA\ LR 1AB7ð

IHEBEGA \ LR 1AE28 IHEERR \ SD 1AE68 IHEERRD \ LR 1AE68 IHEERRC \ LR 1AE68 IHEERRB\ LR 1AE7C

IHEERRA \ LR 1AE68 IHEERRE \ LR 1B4E2 IHEIOF \ SD 1B58ð IHEIOFR \ LR 1B58ð IHEIOFA\ LR 1B582

IHEITAZ \ LR 1B81E IHEITAX \ LR 18B2A IHEITAA \ LR 1B83E IHEDCNR \ SD 1B68ð IHEDCNA\ LR 1B86ð

IHEDCNB \ LR 1B862 IHEIOD \ SD 1BA5ð IHEIODG \ LR 1BA5ð IHEIODP \ LR 1BA52 IHEIODT\ LR 1BB4A

IHEVTB \ SD 1BCFð IHEVTBA \ LR 1BCFð IHEVQA \ SD 1BD78 IHEVQAA \ LR 1BD78

IHEQINV PR ðð IHEGERR PR 4 SAMPL2BB PR 8 SAMPL2BC PR C IHEQSPR PR 1ð

SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR 1C IHEQLW1 PR 2ð IHEQLW2 PR 24

IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR 3ð IHEQLCA PR 34 IHEQVDA PR 38

IHEQFVD PR 3C IHEQFCL PR 4ð IHEQFOP PR 48 IHEQADC PR 4C IHEQXLV PR 5ð

IHEQEVT PR 58 IHEQSLA PR 6ð IHEQSAR PR 64 IHEQLWF PR 68 IHEQRTC PR 6C

IHEQDFC PR 7ð

IEW1ðð1 IHEUPBA

IEW1ðð1 IHEUPAA

IEW1ðð1 IHETERA

IEW1ðð1 IHEM91C

IEW1ðð1 IHEM91B

IEW1ðð1 IHEM91A

IEW1ðð1 IHEDDOD

IEW1ðð1 IHEVPFA

IEW1ðð1 IHEVPDA

IEW1ðð1 IHEDBNA

IEW1ðð1 IHEVSFA

IEW1ðð1 IHEVSBA

IEW1ðð1 IHEVCAA

IEW1ðð1 IHEVSAA

IEW1ðð1 IHEDNBA

IEW1ðð1 IHEUPBB

IEW1ðð1 IHEUPAB

IEW1ðð1 IHEVSEB

 TOTAL LENGTH 5ð68

 ENTRY ADDRESS 17Dðð

IEW1ðð1 WARNING – UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

Figure 71. Batch Loader Module Map

278 DFSMS/MVS V1R4 Program Management

 Return Codes

Appendix C. Program Management Return Codes

This appendix contains the return codes for the binder, linkage editor, and batch
loader.

Also included in this appendix is “Binder API Reason Codes” on page 280 which
lists the reason code and the binder API function which returned the reason code.

Binder Return Codes
The binder can be executed either as a JCL job step, through TSO, through a
macro call from another program, or through the binder application programming
interface. The return codes are interpreted differently based on how you are exe-
cuting the binder.

IEWBLINK Return and Reason Codes
The meaning of the return codes when invoking the binder at entry point IEWBLINK
are described in Figure 72.

Figure 72. IEWBLINK Return Codes

Return
Code

Batch Execution Description

Application Programming Interface (API) Description

0 Informational: the program
was saved and is executable.

Informational: the function was performed exactly as requested.

4 Warning: a warning condition
was noted but should have no
effect on the program module.
Processing continues with no
action required.

Warning: a warning condition was noted but should have no effect on
the requested function. Processing continues with no action required.

8 Error message: The binder
found an error in user data
and has taken an appropriate
default. The integrity of the
output module is assured but
may be incorrect or incom-
plete. The program module is
saved and, if LET or LET(8)
were specified, it is marked
executable.

Error message: The binder found an error in user data and has taken
an appropriate default. The integrity of the output parameter data is
assured, but it may be null or incorrect.

12 Severe error message: the
error encountered has pre-
vented the process from com-
pleting. The resulting
program module, if any,
should be considered unus-
able.

Severe error message: the error encountered has prevented the
process from completing. The function was not performed, and output
parameters (except for return and reason codes) should not be used
in any way.

16 Terminating error message:
processing is terminated
immediately.

Terminating error message: processing is terminated immediately.
This return code may be accompanied by an 0F4 abend.

 Copyright IBM Corp. 1991, 1997 279

 Return Codes

Binder API Reason Codes
Figure 73 shows all reason codes returned by the binder API. The API function(s)
which return the codes are shown. Note that many of the codes can be the result of
an INCLUDE call which includes additional control statements into the binder.

For a more detailed explanation of the specific error condition, refer to the Return
and Reason Codes section of the particular API function being processed in
Chapter 8, “Using the Binder Application Programming Interface” on page 127.

Figure 73 (Page 1 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

00000000 All API func-
tions

Successful completion.

83000001 All API func-
tions

Invalid workmod token. Request rejected.

83000002 All API func-
tions

Invalid dialog token. Request rejected.

83000003 All API func-
tions

Binder invoked from within user exit. Request rejected.

83000004 All API func-
tions

Invalid function code specified. Request rejected.

83000005 All API func-
tions

Invalid call parameter. Request rejected.

83000006 All API func-
tions

Requested function not allowed while in PUTD input mode.
Request rejected.

83000008 All API func-
tions

Wrong number of arguments specified. Request rejected.

83000009 All API func-
tions

One or more parameters not accessible by the binder.
Request rejected.

83000010 All API func-
tions

Parameter list not addressable by the binder. Request
rejected.

83000050 All API func-
tions

WKSPACE storage limit exceeded. Dialog terminated.

83000051 All API func-
tions

Insufficient storage available. Dialog terminated.

83000060 All API func-
tions

Operating system at wrong level. Request rejected.

83000100 SETO Neither Dialog nor Workmod Token were specified on a
call. Request rejected.

83000101 GETE,
INCLUDE,
LOADW,
PUTD, SETL

Invalid combination of parameters specified. Request
rejected.

83000102 GETD,
GETE,
GETN

Workmod was in an unbound state. GET calls not allowed.
Request rejected.

83000103 INCLUDE INTENT = BIND and INTYPE not equal to NAME.
INCLUDE request rejected.

280 DFSMS/MVS V1R4 Program Management

 Return Codes

Figure 73 (Page 2 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000104 ALTERW,
BINDW,
INSERTS,
ORDERS,
SETL,
ALIGN,
STARTS

Function invalid for INTENT = ACCESS. Request rejected.

83000106 SETO Option invalid for INTENT = ACCESS. SETO request
rejected.

83000107 SETO Invalid Option keyword specified. SETO request rejected.

83000108 SETO,
STARTD

The option value is invalid for the specified keyword.
Request rejected.

83000109 SETO The OPTION may not be specified on a SETO function call.
Request rejected.

83000111 STARTD Syntax error or unrecognized option in parameter list.

83000112 STARTD Obsolete option specified in parameter list and is ignored.

83000113 SETO OPTION can be specified only when using the batch entry
points.

83000200 STARTD Unable to open print data set during initialization. Proc-
essing continues without print.

83000201 STARTD One or more invalid options, specified on STARTD, were
ignored. Processing continues.

83000203 STARTD Unable to open SYSTERM data set during initialization.
Processing continues without SYSTERM.

83000204 STARTD Unable to open IEWTRACE data set during initialization.
Processing continues without IEWTRACE.

83000205 STARTD Unable to obtain date and time from operating system.
Date and time stamps set to zero or blanks on modules
and listings.

| 83000206| STARTD| Data set or file allocated to TERM could not be found.
| Processing continues without PRINT.

| 83000207| STARTD| Data set or file allocated to PRINT could not be found.
| Processing continues without PRINT.

83000300 BINDW Unresolved references exist in the module. Either NCAL,
NOCALL, or NEVERCALL were specified. Workmod has
been bound.

83000301 BINDW Unresolved references exist in the module. The names
could not be found in the designated library. Workmod has
been bound.

83000302 BINDW Unresolved references exist in the module. No call library
specified. Workmod has been bound.

83000303 BINDW A reference module was located in the call library, but
could not be included. Workmod has been bound with
unresolved references.

 Appendix C. Program Management Return Codes 281

 Return Codes

Figure 73 (Page 3 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000304 BINDW A name specified on an INSERT request was not resolved,
or was resolved to a label which is not a section name.
Insert request ignored.

83000305 BINDW A name specified on an ORDER request was not resolved,
or was resolved to a label which is not a section name.
Order request ignored.

83000306 LOADW,
SAVEW

The Save or Load Operation Summary could not be
printed. Module may or may not have been processed cor-
rectly, depending on other factors.

83000307 BINDW The Map or Cross Reference listings could not be printed,
but the module was bound successfully.

83000308 BINDW Unresolved references exist in the module. A member of
the same name was located in the library, but did not
resolve the symbol. Module was bound successfully.

83000309 BINDW A name specified on an ALIGNT request was not resolved,
or was resolved to a label which is not a section name.
ALIGNT request ignored.

83000310 BINDW One or more ALTER requests were pending at entry to
autocall, and were ignored.

83000311 BINDW Overlay option not specified, but module contained multiple
segments. Overlay structure ignored.

83000312 BINDW Root segment contains no text.

83000313 BINDW A 3-byte VCON in an overlay module cannot be relocated
correctly.

83000314 BINDW Overlay module bound with at least one valid exclusive call.

83000315 BINDW Invalid exclusive calls in module. Relocation not possible.
Module bound.

83000316 BINDW Overlay specified, but module contained only one segment.
Module bound, but not in overlay format.

83000317 BINDW One or more valid exclusive calls present, but XCAL was
not specified. Module bound in overlay format.

83000318 BINDW Module contains no branches out of the root segment.
Module bound in overlay format.

83000320 BINDW An autocall library was not usable. Autocall proceeded
without library.

83000321 BINDW RMODE(SPLIT) or OVERLAY incompatible with COMPAT
specification.

83000322 BINDW Conflicting attributes specified for data elements belonging
to a class. Data for the class was discarded.

83000400 SAVEW Module has been saved, but has been marked
NOT-EDITABLE.

83000401 SAVEW One or more aliases could not be added to directory.
Module saved successfully.

282 DFSMS/MVS V1R4 Program Management

 Return Codes

Figure 73 (Page 4 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000402 SAVEW Specified entry name not defined in the module, or entry
point offset is beyond the bounds of the containing element.
Entry point defaults to first text byte.

83000403 SAVEW Reusability of one or more sections was less than that
specified for the module.

83000404 SAVEW The module exceeded the limitations for record format load
modules. Module not saved.

83000405 SAVEW A permanent write error was encountered while attempting
to write the module. Module not saved.

83000406 SAVEW A permanent read error was encountered while processing
an input data set.

83000407 SAVEW No valid member name was available during SAVEW call.
Module not saved.

83000408 SAVEW Workmod marked not-executable and cannot replace exe-
cutable version. Module not saved.

83000409 SAVEW A member of the same name exists in the library, but
replace was not specified. Module not saved.

83000410 SAVEW Error encountered converting module to requested output
format.

83000411 SAVEW SCTR specified for linear format module. Option ignored.

83000412 SAVEW A valid entry point could not be determined.

83000413 SAVEW One or more external references were bound to modules in
LPA. Module not saved.

| 83000414| SAVEW| The workmod is null. No modules were successfully
| included from any source file. The workmod cannot be
| saved.

83000415 BINDW,
LOADW,
SAVEW

The module contains no text or no ESDs.

83000416 SAVEW No DDNAME has been provided for the output library.
Module not saved.

83000417 SAVEW Target dataset of SAVEW is not a library. Module not
saved.

83000418 SAVEW Target dataset of SAVEW is not a load library. Module not
saved.

83000419 Incompatible options existed at save time for OVERLAY.

83000420 SAVEW Workmod modified before being stored in record format.

83000421 SAVEW Module has more than 1 GIGABYTE of text. Module not
saved.

83000422 SAVEW Workmod has data which cannot be saved in the requested
format.

83000500 INCLUDE An INCLUDE call specifies a non-empty target workmod
with INTENT=ACCESS. Request is rejected.

 Appendix C. Program Management Return Codes 283

 Return Codes

Figure 73 (Page 5 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000501 BINDW Control statements included during autocall have been
ignored.

83000502 INCLUDE Some of the editing requests(CHANGE, DELETE,
REPLACE) failed. Module included, but some changes not
made.

83000503 INCLUDE I/O error encountered while attempting to read dataset or
directory. Input not usable.

83000504 INCLUDE Aliases and/or attributes were not included because direc-
tory not accessible. However, module included success-
fully.

83000505 INCLUDE Included module marked NOT-EDITABLE and has been
bypassed.

83000506 INCLUDE Attempt to include object module into workmod with
INTENT=ACCESS. Request rejected.

83000507 INCLUDE A format error has been encountered in an included record
format module. The module has been bypassed.

83000509 INCLUDE An attempt has been made to include a file of control state-
ments when INTENT=ACCESS. Request rejected.

83000510 INCLUDE Errors were detected in the included module. Module was
bypassed.

83000511 INCLUDE A control statement attempted to include a file which was
already in the include path. The recursive include has
been bypassed.

83000512 INCLUDE More than one module in an included file, and
INTENT=ACCESS was specified. Request rejected.

83000513 INCLUDE I/O error encountered reading a file or directory. File not
included.

83000514 INCLUDE Dataset or member not found. Module not included.

83000515 INCLUDE Unsupported control statement in included file. Statement
ignored.

83000516 INCLUDE Format error encountered in included control statement.
Error statements ignored.

83000517 INCLUDE Name statement encountered, but output library
(SYSLMOD) not specified. Statement rejected.

83000518 INCLUDE Name statement encountered in secondary input file.
Statement ignored.

83000519 INCLUDE Included module contained errors and has been bypassed.

83000520 INCLUDE Dataset or member specified on control statement could not
be found. Include has been bypassed.

83000521 INCLUDE An I/O error has been encountered while attempting to read
the dataset or directory. Include bypassed.

83000522 INCLUDE The dataset specified on an include statement could not be
opened. Include bypassed.

83000523 INCLUDE For INTENT=ACCESS, the requested module contained a
format error and was not placed in the workmod.

284 DFSMS/MVS V1R4 Program Management

 Return Codes

Figure 73 (Page 6 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000525 INCLUDE An unusual condition was encountered while processing
and EDIT request (CHANGE, DELETE, REPLACE).

83000526 INCLUDE An unusual condition was encountered while processing an
input module.

83000550 ALTERW A section for which an EXPAND request was made was not
in the workmod. Request not processed.

83000551 ALTERW The name on an EXPAND request matches a symbol
which is not a section in the workmod. Request not proc-
essed.

83000552 ALTERW The name on a CHANGE or REPLACE request is blank.
Request rejected.

83000553 ALTERW An EXPAND request was made for more than 1
GIGABYTE.

83000554 ALTERW The class requested for expanding does not exist. Request
rejected.

83000555 ALTERW The class requested for expanding is not text. Request
rejected.

| 83000556| EXPAND| The name on an EXPAND request did not match that of a
| section in workmod. Request not processed.

83000600 SAVEW Output library (SYSLMOD) not found. Request rejected.

83000601 SAVEW Unable to close output library. Module saved but may be
unusable.

83000602 SAVEW Unable to open output library. Save failed.

83000603 LOADW,
SAVEW

The AMODE or RMODE of one or more sections is not
compatible with the AMODE or RMODE of the primary
entry point. Save or load operation continues.

83000604 LOADW,
SAVEW

AMODE/RMODE combination for the module is invalid.
Save or load operation continues.

83000605 LOADW,
SAVEW

No entry point available from input. Will default to first text
byte.

83000606 LOADW,
SAVEW

One or more RMODE(24) sections have been included in
an RMODE(ANY) module.

| 83000607| LOADW,
| SAVEW
| The module was loaded successfully, but the indicated
| 2-byte adcon(s) did not relocate correctly.

83000650 LOADW Entry name not defined in module. Defaults to first text
byte.

83000651 LOADW IDENTIFY failed because name already known to system.
Load successful, but module cannot be reached through
system linkage.

83000652 LOADW Insufficient virtual storage to load the module. Module not
loaded.

83000653 LOADW An error of severity greater than the LET option was seen
while processing load.

83000654 LOADW An error was found while converting from workmod to exe-
cutable form.

 Appendix C. Program Management Return Codes 285

 Return Codes

Figure 73 (Page 7 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000655 LOADW Extent list buffer provided room for only one extent, but a
second extent exists for the mini-cesd. Module loaded suc-
cessfully.

83000656 LOADW The module was bound in overlay format and cannot be
loaded.

83000657 LOADW An AMODE(24) module has been bound to one or more
modules in ELPA.

83000702 ALTERW The name specified on an IMMEDIATE ALTERW request
could not be found in the ESD. Alteration rejected.

83000704 ENDD Unexpected condition during ENDD. Dialog ended, but
some resources may not have been released.

83000705 GETE Specified symbol could not be located in workmod. No
data returned in buffer.

83000706 ALTERW The new name specified on an IMMEDIATE CHANGE
request already existed. The name or section was deleted,
and the requested change made.

83000707 DELETEW The workmod was in an altered state, but PROTECT=YES
was specified. DELETEW request rejected.

83000708 ENDD One or more workmods were in an active state, but
PROTECT=YES was specified. ENDD request rejected.

83000709 RESETW The workmod was in an altered state, but PROTECT=YES
was specified. RESETW request rejected.

83000710 ALIGNT Name already specified on ALIGNT request, request
rejected.

83000711 ADDA,
INSERTS,
ORDERS,
SETL

A previous INSERT, ORDERS, ADDA or SETL request for
this name has been replaced.

83000712 STARTS Maximum of 4 regions will be exceeded. Request rejected.

83000713 STARTS Maximum of 255 segments will be exceeded. Request
rejected.

83000719 BINDW Module contains no text.

83000750 GETD,
GETN

Buffer too small for one record.

83000800 GETD,
GETE,
GETN

End of data condition. Some data returned in buffer.

83000801 GETD,
GETE,
GETN,
PUTD

Requested element not found or empty. No data returned.

83000802 PUTD Attempt to create new section with INTENT=ACCESS.
Request rejected.

83000803 PUTD Target section for PUTD not found. Request rejected.

286 DFSMS/MVS V1R4 Program Management

 Return Codes

Figure 73 (Page 8 of 8). Binder API Common Reason Codes

Reason
Code

API
Function

Explanation

83000804 PUTD Attempt to modify ESD or RLD with INTENT=ACCESS.
Request rejected.

83000805 PUTD Attempt to extend length of text with INTENT=ACCESS.
Request rejected.

83000806 PUTD Attempt to modify binder generated sections. Request
rejected.

83000807 PUTD Attempt to modify existing section when NEWSECT=YES,
or NEWSECT=NO was specified while still in input mode.
Request rejected.

83000808 PUTD Attempt to modify IDRB record. Request rejected.

83000810 GETN CURSOR negative or beyond end of item.

83000811 PUTD One or more errors detected in module just completed.
Section(s) not merged.

83000812 GETE OFFSET negative or beyond end of item or module. No
data returned in buffer.

83000813 GETD Workmod data is incompatible with the specified buffer
version.

83000814 PUTD Severe data errors in records contained in PUTD data
buffers.

83000815 PUTD Errors (such as invalid names) found in records contained
in PUTD data buffers. Some data may have been dropped.

83000FFF ALL IEWBIND module could not be loaded. Issued by
IEWBIND invocation macro.

83EE2900 ALL Binder logic error. Dialog terminated.

83FFaaa0 ALL Binder abend aaa occurred. Dialog terminated.

IEWBLDGO Return Codes
Figure 74 contains descriptions of the return codes from the binder link-load-and-go
entry point.

Figure 74. IEWBLDGO Return Codes

Return
Code

Description

0 The binder linked and loaded the program, and the program executed success-
fully.

12 A link error occurred whose severity is greater than that specified on the LET
option. The program is not loaded or executed.

16 The binder linked and loaded the program, but the program abended during
execution.

n The binder linked and loaded the program, but the program set other than a
zero return code in register 15. “n” is the program's return code.

 Appendix C. Program Management Return Codes 287

 Return Codes

Linkage Editor Return Codes
Control is passed to the linkage editor as a job step when the linkage editor is
specified on an EXEC job control statement in the input stream. When the job step
is completed, the linkage editor passes a return code to the control program.

The return code reflects the highest severity code recorded in any iteration of the
linkage editor within that job step. The highest severity code encountered during
processing is multiplied by 4 to create the return code; this code is placed into reg-
ister 15 at the end of linkage editor processing. Figure 75 contains the return
codes, the corresponding severity code, and a description of each.

Figure 75. Linkage Editor Return Codes

Return
Code

Severity
Code

Description

0 0 Normal conclusion

4 1 Warning messages have been listed; execution should be suc-
cessful.

8 2 Error messages have been listed; execution may fail. The module
is marked not executable unless the LET option is specified.

12 3 Severe errors have occurred; execution is impossible.

16 4 Terminal errors have occurred; the processing has terminated.

Batch Loader Return Codes
The return code of a loader step is determined by the return codes resulting from
batch loader processing and from loaded program processing.

The return code indicates whether errors occurred during the execution of the
loader or of the loaded program. The return code can be tested through the COND
parameter of the JOB statement specified for this job or the COND parameter of
the EXEC statement specified in any succeeding job step (see OS/390 MVS JCL
User's Guide). Figure 76 shows the return codes.1

Figure 76 (Page 1 of 2). Batch Loader Return Codes

Code
Returned
to Caller

Loader
Return
Code

Program
Return
Code

Description

0 0 0 Program loaded successfully, and execution of the loaded program was suc-
cessful.

0 4 0 The batch loader found a condition that may cause an error during execution,
but no error occurred during execution of the loaded program.

0 8(LET) 4 The batch loader found a condition that may cause an error during execution,
but no error occurred during execution of the loaded program.

4 0 4 Program loaded successfully, and an error occurred during execution of the
loaded program.

1 Error diagnostics (SYSLOUT or SYSTERM data set, or both) for the loader will show the severity of errors found by the loader.

288 DFSMS/MVS V1R4 Program Management

 Return Codes

Figure 76 (Page 2 of 2). Batch Loader Return Codes

Code
Returned
to Caller

Loader
Return
Code

Program
Return
Code

Description

4 4 4 The batch loader found a condition that may cause an error during execution,
and an error did occur during execution of the loaded program.

4 8(LET) 4 The batch loader found a condition that may cause an error during execution,
and an error did occur during execution of the loaded program.

8 0 8 Program loaded successfully, and an error occurred during execution of the
loaded program.

8 4 8 The batch loader found a condition that may cause an error during execution,
and an error did occur during execution of the loaded program.

8 8(LET) 8 The batch loader found a condition that may cause an error during execution,
and an error did occur during execution of the loaded program.

8 8 The batch loader found a condition that could make execution impossible.
The loaded program was not executed.

12 0 12 Program loaded successfully, and an error occurred during execution of the
loaded program.

12 4 12 The batch loader found a condition that may cause an error during execution,
and an error did occur during execution of the loaded program.

12 8(LET) 12 The batch loader found a condition that may cause an error during execution,
and an error did occur during execution of the loaded program.

12 12 The batch loader could not load the program successfully; execution impos-
sible.

16 0 16 Program loaded successfully, and the loaded program found a terminating
error.

16 4 16 The batch loader found a condition that may cause an error during execution,
and a terminating error was found during execution of the loaded program.

16 8(LET) 16 The batch loader found a condition that may cause an error during execution,
and a terminating error was found during execution of the loaded program.

16 16 The batch loader could not load program; execution impossible.

 Appendix C. Program Management Return Codes 289

 Return Codes

290 DFSMS/MVS V1R4 Program Management

 Binder output

Appendix D. Interpreting Binder Output

This appendix contains an overview of the binder output. This output is written to
SYSPRINT, SYSLOUT, or another ddname assigned to the PRINT file (using the
FILES parameter) on the STARTDialog call. Except where noted, all outputs apply
to both batch entry points (IEWBLINK and IEWBLDGO) and to both load modules
and program objects.

Linkage editor and batch loader outputs are described in “Interpreting Linkage
Editor Output” on page 272 and “Interpreting Batch Loader Output” on page 276.

The output data is divided into a number of categories, some of which always
appear in the output listing and others of which may appear depending on the
options selected. The categories are:

 � Header
� Input Event Log
� Program Module Map

| � Renamed Symbol Table
 � Cross-Reference Table

| � Imported and Exported Symbol Table
 � Operation Summary

| � Long-symbol Cross-Reference Table
 � Message Summary

 Header
The header is written at the beginning each section of the output. The header con-
tains information on the release and modification level and on how the binder was
invoked.

� Name, version, release, and modification level of the binder

� Time, day, and date of invocation

� Job name, step name, program name, and (if one has been used) procedure
name when invoked by use of a batch interface. When invoked via the applica-
tion programming interface, the binder prints the contents of the CALLERID
field from the STARTD call.

� Binder entry point name.

Input Event Log
The input event log is a chronological log of the events that took place during the
input phase of binder operation. Its presence is controlled by the LIST option. If
LIST(OFF) or NOLIST is specified, no input event log is generated. If LIST(STMT),
LIST, or LIST(SUMMARY) is specified, only input events pertaining to control state-

| ments are logged. If LIST(NOIMP) is specified, messages pertaining to the import
| control statement are suppressed, while those generated by other control state-
| ments and binder calls continue to be logged. When processing DLLs which
| contain a large number of IMPORT control statements in their side files, this option
| helps to reduce the number of messages logged while still providing information
| about other binder processing. If LIST(ALL) is specified, all input events are logged

 Copyright IBM Corp. 1991, 1997 291

 Binder output

(such as those initiated by binder function calls as well as those initiated by control
statements).

Figure 77 contains a sample input event log. The log may include:

| � The list of processing options used in the binder invocation.

| � Errors with the invocation parameter (binder or batch loader options)

� Line by line summary of functions performed during the input phase. Each bind
operation is treated separately: a control statement is printed, followed by a
summary of the function performed and the complete names of the objects
operated upon.

� Errors encountered during the input phase.

DFSMS/MVS V1 R4.0 BINDER 14:00:46 MONDAY JUNE 30, 1997
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND1) PGM= IEWL
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),MAP,XREF,NCAL
IEW2322I 1220 1 INCLUDE MYLIB(PROGBCAD)
IEW2308I 1112 SECTION PROGBCAD HAS BEEN MERGED.
IEW2322I 1220 2 INCLUDE MYLIB(PROGBCDS)
IEW2308I 1112 SECTION PROGBCDS HAS BEEN MERGED.
IEW2322I 1220 3 INCLUDE MYLIB(PROGBCOV)
IEW2308I 1112 SECTION PROGBCOV HAS BEEN MERGED.
IEW2322I 1220 4 MODE AMODE(31),RMODE(ANY)
IEW2322I 1220 5 ENTRY PROGDCTL
IEW2322I 1220 6 ALIAS PROGIND
IEW2322I 1220 7 ALIAS PROGSTAK
IEW2322I 1220 8 NAME PROGIND0(R)
IEW2454W 9203 SYMBOL PROGXCLW UNRESOLVED. NO AUTOCALL (NCAL) SPECIFIED.
IEW2454W 9203 SYMBOL PROGXCWL UNRESOLVED. NO AUTOCALL (NCAL) SPECIFIED.

Figure 77. Sample Binder Input Event Log

Note: In DFSMS 1.4.0, Binder message IEW2308I replaces the previous message
IEW2307I.

Program Module Map
A map of the program module is generated if the MAP option was specified for the
run. Figure 78 on page 294 and Figure 79 on page 296 contain sample program
module maps (one for a simple module and one for an overlay module). Each text
class is mapped showing each section or external label on a separate line and
INCLUDING information about the source of the section. A “SOURCE” column
indicates the data set (by ddname and concatenation sequence number) and
member from which each section was included. Map entries are sequenced by
module location within class or overlay segment.

The following describes the detailed line information included in the module map:

� SECTION OFFSET - The location of the section or label relative to the start of
the element (class section) in which it is defined. Section offset is printed only
for labels, not sections.

� CLASS OFFSET/MODULE OFFSET - The location of the section or label rela-
tive to the start of the class or overlay segment.

292 DFSMS/MVS V1R4 Program Management

 Binder output

� NAME - The name of the entity being mapped. An asterisk preceding the
name indicates that the section was included during the autocall phase.

Some section types do not have external names and are displayed as follows:

– $SEGTAB - Overlay segment table
– $ENTAB - Overlay segment entry table
– $PRIVxxxxxx - Private code where xxxxxx is a unique hexadecimal value

starting at X'000001'
– $BLANKCOM - Blank (unnamed) common

� TYPE - The label type of the entity being mapped:

– CSECT - Control section
– LABEL - External label
– COMMON - Named or unnamed common
– SEGTAB - Overlay segment table
– ENTAB - Overlay segment entry table

� LENGTH - The length in hexadecimal bytes of the section or segment. If TYPE
is LABEL, this field is blank.

� SOURCE - The ddname, concatenation sequence number, and optionally the
member name from which this section is included.

The last item in the module map is the data set summary. It contains one entry for
each combination of ddname and concatenation sequence number referenced in

| the module map and displays the corresponding data set name. Starting in
| DFSMS 1.4.0, the data set summary also includes pseudo-ddnames, symbolic
| ddnames created by the binder to represent OpenEdition files. These 8-byte
| pseudo-ddnames are used in the module map and other reports in order to improve
| the reports' readability. The data set summary cross-references the pseudo-
| ddnames to their corresponding OpenEdition file names. A pseudo-ddname is of
| the form '/000000n', where 'n' is a number that increases as new OpenEdition files
| are processed by the binder.

Data sets and libraries from which no members were included do not appear in the
data set summary.

 Simple Module
The following figure illustrates a simple module, containing one text class (B_TEXT)
and the pseudoregister vector (B_PRV). Each text class begins with a class
header containing the class name, its length in bytes, and significant bind and load
attributes of the class:

� CAT indicates that the class is a concatenation of all participating sections.
� LOAD indicates that the class will be loaded when the module is loaded.
� RMODE=ANY indicates that this class can be placed above the 16 MB line.

All CAT-type text classes consist of sections (CSECTs) and labels.

The second class, B_PRV, represents the pseudoregister vector (PRV), if one is
present. It replaces the special PRV display which appeared in earlier releases of
the binder. Its attributes are:

� MRG indicates that the class consists of parts, which are merged by part name.
� NOLOAD means that the class will not be loaded with the module.

 Appendix D. Interpreting Binder Output 293

 Binder output

There are several differences between the MRG and CAT classes. Since all
pseudoregisters are located in the same section, section offset and class offset are
identical; only one is printed. The entity is PART rather than CSECT or LABEL,
each part representing a single pseudoregister or external data item. Finally,
SOURCE is not displayed, since all parts are created by the binder.

DFSMS/MVS V1 R4.ð BINDER ð9:36:56 TUESDAY JULY 1, 1997

BATCH EMULATOR JOB(PMSBC321) STEP(BIND2) PGM= IEWBLINK

IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),NCAL,LET,OVLY,MAP,XCAL

\\\ M O D U L E M A P \\\

 CLASS B_TEXT LENGTH = A2ð ATTRIBUTES=CAT, LOAD, RMODE=ANY ALIGN=DBLWORD

SECTION CLASS ------- SOURCE --------

 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 ð CEESTART CSECT 7C OBJ ð1 C955Að3

8ð EDCINPL \ CSECT 28 /ðððððð1 ð1 EDCINPL

 A8 STRCMP \ CSECT 1ð SYSLIB ð2 STRCMP

 B8 PRINTF \ CSECT 1ð SYSLIB ð2 PRINTF

 C8 EDC@@1FC \ CSECT 1ð SYSLIB ð6 exit

 ð C8 exit LABEL

 ð C8 EDC#EXIT LABEL

 D8 CEESGðð3 \ CSECT 128 SYSLIB ð6 exit

 2ðð puts \ CSECT 1ð SYSLIB ð6 puts

 21ð printf \ CSECT 1ð SYSLIB ð6 printf

 22ð CEEROOTA \ CSECT 1F8 SYSLIB ð2 CEEROOTA

 418 CEEBETBL \ CSECT 28 SYSLIB ð1 CEEBETBL

 44ð CEEBPUBT \ CSECT 7ð SYSLIB ð2 CEEBPUBT

 4Bð CEEBTRM \ CSECT Bð SYSLIB ð2 CEEBTRM

 56ð CEEBLLST \ CSECT 6ð SYSLIB ð2 CEEBLLST

 1ð 57ð CEELLIST LABEL

 5Cð CEEBINT \ CSECT 8 SYSLIB ð2 CEEBINT

 5C8 CEEBPIRA \ CSECT 28ð SYSLIB ð2 CEEINT

 ð 5C8 CEEINT LABEL

 ð 5C8 CEEBPIRB LABEL

 ð 5C8 CEEBPIRC LABEL

 848 CEECPYRT \ CSECT Fð SYSLIB ð2 CEEINT

 938 CEEARLU \ CSECT B8 SYSLIB ð2 CEEARLU

 9Fð CEETGTFN \ CSECT 1ð SYSLIB ð1 CEETGTFN

 Aðð CEETLOC \ CSECT 2ð SYSLIB ð1 CEETLOC

Figure 78 (Part 1 of 2). Sample Binder Module Map

294 DFSMS/MVS V1R4 Program Management

 Binder output

CLASS B_PRV LENGTH= 18 ATTRIBUTES=MRG,NOLOAD

 CLASS

 OFFSET NAME TYPE LENGTH SECTION

 ð GFLGA PART 1

 1 GFLGE PART 1

 2 GFLGC PART 1

 3 GFLGC PART 1

 4 COUNTF PART 2

 8 MASTER PART 4

 1ð B_TOKEN PART 8

\\\ DATA SET SUMMARY \\\

 DDNAME CONCAT FILE IDENTIFICATION

 OBJ ð1 DFPFT.WORKLIB.OBJECT

 /ðððððð1 ð1 /DFPFT/APP1/EDCINPL

 SYSLIB ð1 DFPFT.WORKLIB.POSIX.RTL.UT2.SCEELKED

 SYSLIB ð2 DFPFT.WORKLIB.CEE.V1R7Mð.SCEELKED

 SYSLIB ð6 A86ðð59.SCEELKED.LONGNAME

\\\ E N D O F M O D U L E M A P \\\

Figure 78 (Part 2 of 2). Sample Binder Module Map

The next figure shows an overlay format module map, containing three overlay seg-
ments and a pseudoregister vector. Note that all text is contained in class
B_TEXT, a requirement of overlay programs.

 Appendix D. Interpreting Binder Output 295

 Binder output

DFSMS/MVS V1 R4.ð BINDER 14:ðð:46 MONDAY JUNE 3ð, 1997

BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK

IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),NCAL,LET,OVLY,MAP,XCAL

\\\ M O D U L E M A P \\\

CLASS: B_TEXT LENGTH: 11848 ATTRIBUTES: CAT, LOAD, RMODE: 24 ALIGN: DBLWORD

SEGMENT ðð1 REGION ðð1 LENGTH: A37ð ATTRIBUTES: OVERLAY RMODE: 24

 SECTION MODULE ------- SOURCE ------

 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 ð PROGBCAD CSECT 1868 MYLIB 1 PROGBCAD

 1868 PROGBCDS CSECT 13E8 MYLIB 1 PROGBCDS

 2C5ð PROGBCOV CSECT 19ð MYLIB 1 PROGBCOV

 2DEð PROGBIND CSECT C3ð SYSLIB 1 PROGBIND

 3A1ð PROGBRAC CSECT 15Dð SYSLIB 2 PROGBRAC

 83F8 PROGBUPA CSECT 1A2ð SYSLIB 2 PROGBUPA

 9E18 PROGPMMB CSECT 528 SYSLIB 2 PROGPMMB

424 A23C PROGPARB LABEL

 A34ð PROGCDEF CSECT 3Fð SYSLIB 1 PROGCDEF

SEGMENT ðð2 REGION ðð1 LENGTH: 32Eð ATTRIBUTES: OVERLAY RMODE: 24

 SECTION MODULE ------- SOURCE ------

 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 ð PROGMX21 CSECT 868 SYSLIB 1 PROGBCAD

 868 PROGGROV CSECT 3E8 SYSLIB 1 PROGBCDS

 C5ð PROGWYY CSECT 49ð MYLIB 1 PROGBCOV

 1ðEð PROGR2D2 CSECT C3ð MYLIB 1 PROGBIND

 1D1ð PROGC3PO CSECT 15Dð MYLIB 1 PROGBRAC

Figure 79 (Part 1 of 2). Sample Binder Module Map - Overlay

296 DFSMS/MVS V1R4 Program Management

 Binder output

DFSMS/MVS V1 R4.ð BINDER 14:ðð:46 MONDAY JUNE 3ð, 1997

BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK

SEGMENT ðð3 REGION ðð1 LENGTH: 3E38 ATTRIBUTES: OVERLAY RMODE: 24

 SECTION MODULE ------- SOURCE ------

 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 ð OBI_WAN CSECT 72ð MYLIB 1 PROGBCAD

 72ð JABBA CSECT 9Að MYLIB 1 PROGBCDS

 1ðCð STARWARS CSECT 44ð MYLIB 1 PROGBCOV

ð 1ðCð LUKE LABEL

4 1ðC4 LEAH LABEL

8 1ðC8 DARTH LABEL

 15ðð YODA CSECT 2ð3ð MYLIB 1 PROGBIND

 353ð CHEWBACA CSECT 9ð4 MYLIB 1 PROGBRAC

CLASS: B_PRV LENGTH: D7ð ATTRIBUTES: MRG, NOLOAD

 CLASS

 OFFSET NAME TYPE LENGTH

 ð INFILE PART 4

 4 OUTPUT1 PART 4

 8 WORK1 PART D56

D6ð SYSPRINT PART 4

D68 MESSAGEH PART 8

\\\ DATA SET SUMMARY \\\

DDNAME CONCAT FILE IDENTIFIER

 MYLIB 1 JONES.PROJECT6.LOADLIB

 SYSLIB 1 DEPT77.OBJLIB

 2 DEPT83.OBJLIB

\\\ E N D O F M O D U L E M A P \\\

Figure 79 (Part 2 of 2). Sample Binder Module Map - Overlay

| Renamed-Symbol Cross-Reference Table
| The renamed-symbol cross-reference table is printed only if one or more names
| were renamed for symbol resolution purposes. The table shows the correspond-
| ence between the new (renamed) and the source symbols.

| The binder normally processes symbols exactly as received from the compiler.
| However, certain symbolic references generated by the C,C++ and other compilers
| may be renamed by the binder if they contain long or mixed case names
| ("L-names") and cannot be resolved by the L-name during autocall. During
| renaming, the L-name reference is replaced by its equivalent short name. Such
| replacements, whether resolved or not, will appear in the Renamed-Symbol Table.

| The following example depicts three renamed symbols, the last of which is differen-
| tiated as a part or pseudo-register name.

 Appendix D. Interpreting Binder Output 297

 Binder output

| \\\ RENAMED SYMBOL CROSS REFERENCE \\\

| ---------------------

| RENAMED SYMBOL

| SOURCE SYMBOL

| ---------------------

| function9_4ð__FPfPi

| function9_xxxxxxxxx2ðxxxxxxxx3ðxxxxxxxx4__FPfPi

| function2_31__sqrt

| function2_xxxxxxxxx2ðxxxxxxxx3__sqrt

| +function7_41__FPfPi

| function7_xxxxxxxxx2ðxxxxxxxx3ðxxxxxxxx4__FPfPi

| + = PART OR PSEUDO REG

| \\\ END OF RENAMED SYMBOL CROSS REFERENCE \\\

| Figure 80. Sample Binder Renamed-Symbol Cross-Reference

 Cross-Reference Table
A cross-reference table of the program module is provided if the XREF option was
specified for the run. The table does not depend upon nor does it automatically
generate a module map.

The table contains one entry for each address constant in the module. The left half
of the table describes the reference (address constant), showing module location,
section name, section offset, and address constant type. The right half of the table
describes the external symbol being referenced. Table entries appear in the same
sequence as the location of the address constants within the overlay segment.

Figure 81 on page 299 shows a sample cross-reference table. The columns
contain the following information:

� CLASS OFFSET - The offset of the address constant relative to the start of the
class.

| � SECT/PART - The name of the section or part containing the address constant.

� SEG - The segment number if the module is in overlay format.

� RG - The region number if the module is in overlay format.

� ELEMENT OFFSET - The offset of the address constant relative to the start of
the section component of the class.

� TYPE - Address constant type. One of four types may appear:

– V-CON - An adcon normally used for program branching

– A-CON - An adcon normally used for data reference

– Q-CON - An adcon which references a pseudoregister or other part by its
offset within the class

– CXD - An adcon which will receive the cumulative length of the
pseudoregister vector or other class.

� SYMBOL - The external symbol being referenced.

298 DFSMS/MVS V1R4 Program Management

 Binder output

� SECTION - The name of the section containing the referenced symbol. If the
symbol is unresolved or non-relocatable, this field is set to one of the following:

– $NON-RELOCATABLE - The address constant contains a non-relocatable
value, such as a pseudoregister offset or PRV length.

– $UNRESOLVED - The referenced symbol is unresolved.

– $UNRESOLVED(W) - The referenced symbol is an unresolved weak
external reference (WXTRN).

– $NEVER-CALL - The referenced symbol was identified as never-call.

� SEG - The number of the overlay segment containing the referenced symbol if
the module is in overlay format.

� RG - The number of the overlay region containing the referenced symbol if the
module is in overlay format.

� ELEMENT OFFSET - The offset of the referenced symbol relative to the start of
its containing element, identified by section and class names.

� CLASS NAME - The target class.

The cross reference table contains one segment for each text class containing
address constants. A separator line containing the class precedes the adcon
listing. Text classes which are not loaded with the module, such as B_PRV, will
never contain address constants and will not appear in this report.

C R O S S - R E F E R E N C E T A B L E

 TEXT CLASS = B_TEXT

 --------------- R E F E R E N C E -------------------------- T A R G E T ---

 CLASS ELEMENT | ELEMENT |

OFFSET SECT/PART (ABBREV) OFFSET TYPE | SYMBOL(ABBREV) SECTION (ABBREV) OFFSET CLASS NAME |

 | |

48 SD1 48 A-CON | SD1 ð B_TEXT |

C4 SD1 C4 V-CON | LD1 SDX A8 B_TEXT |

126 SD1 126 Q-CON | GFLGA $NON-RELOCATABLE ð B_PRV |

18E SD1 18E Q-CON | B-TOKEN $NON-RELOCATABLE 1ð B_PRV |

1F6 SD1 1F6 Q-CON | GFLGC $NON-RELOCATABLE 2 B_PRV |

25E SD1 25E Q-CON | MASTER $NON-RELOCATABLE 8 B_PRV |

2C6 SD1 2C6 Q-CON | GFLGE $NON-RELOCATABLE 1 B_PRV |

32E SD1 32E Q-CON | COUNTF $NON-RELOCATABLE 4 B_PRV |

396 SD1 396 Q-CON | GFLGG $NON-RELOCATABLE 3 B_PRV |

3FC SD1 3FC CXD | $NON-RELOCATABLE B_PRV |

49ð SD1 49ð V-CON | SD2 SD2 ð B_TEXT |

568 SD2 48 A-CON | SD2 ð B_TEXT |

5E4 SD2 C4 V-CON | LD2 SDX AC B_TEXT |

644 SD2 124 V-CON | LD3 $PRIVATE ð B_TEXT |

6A4 SD2 184 V-CON | LD4 $PRIVATE 4 B_TEXT |

7ð4 SD2 1E4 V-CON | CM1 CM1 ð B_TEXT |

7B4 SD2 294 V-CON | CM1 CM1 ð B_TEXT |

86ð SDX 48 A-CON | SDX ð B_TEXT |

Figure 81. Sample Binder Cross-reference Table

| Imported and Exported Symbol Table
| The Imported and Exported Symbol Table is part of the Module Summary Report.
| This table is only printed if the binder option DYNAM(DLL) is specified and there
| are symbols to import or export.

 Appendix D. Interpreting Binder Output 299

 Binder output

| The table shows the imported and exported symbols, whether they represent code
| or data, and, for imported symbols, the name of the dynamic link library from which
| the symbol was imported.

| A sample table is shown below. All imported symbols are listed first, followed by
| the exported symbols. Within each group, symbols are arranged alphabetically.
| There are some differences between the two groups:

| � The member name or OpenEdition file name for the IMPORT is derived from
| the IMPORT control statement.

| � The member name for EXPORT is always the same as the symbol name, and
| so it is omitted.

| � Symbol and member names longer than 16 bytes are abbreviated to unique
| 16-byte replacements which are used in this and other tables. Figure 85 on
| page 303 shows the correspondence between the long names and their abbre-
| viations.

| \\\ I M P O R T E D A N D E X P O R T E D S Y M B O L S \\\

| IMPORT/EXPORT TYPE NAME MEMBER

| ------------- ---- ---------------- ----------------

| IMPORT CODE DestroyWindow() REMSESII

| IMPORT CODE ExpandWindow() REMSESII

| IMPORT CODE FinishAcct REMSESII

| IMPORT CODE GenerateColors REMSESII

| EXPORT CODE ShrinkWin-ported

| EXPORT DATA ShrinkWin#ððððð1

| EXPORT DATA S1

| EXPORT CODE S7

| \\\ END OF IMPORT/EXPORT \\\

| Figure 82. Sample Binder Imported and Exported Symbols Table

 Operation Summary
The operation summary is generated at the conclusion of the each save or load
operation. The save operation summary is produced by entry point IEWBLINK; the
load operation summary by entry IEWBLDGO.

The save and load operation summaries are produced when LIST=ALL or
LIST=SUMMARY is specified and when meaningful information is available. For
example, if the load operation failed, no load summary is produced.

Figure 83 on page 302 and Figure 84 on page 303 contain sample save and load
operation summaries. The summaries contain information such as,

� Current processing options These are the binder options in force at the time the
module is bound.

� SAVE or LOAD information (as appropriate):

– Date and time of SAVE

– Name of output program library

– Volume serial or storage class of the output program library

300 DFSMS/MVS V1R4 Program Management

 Binder output

– Name of member

– Program module attributes (specified and defaulted)

Note that certain module attributes are not specified as binder options but
are determined from the module itself:

- Exceeds 16 MB
 - Executable
 - Migratable

These attributes provide additional information in the directory entry for later
use by the binder or loader.

 – Status (executable/non-executable)

– Total length of the program module (both when loaded and saved)

– Load point address of a loaded program module

– Entry point address of a loaded program module

– Name of a loaded program module if it has been identified to the system in
virtual storage.

� Entry point and alias summary:

– Main entry point name

– Alternate entry point and true alias names

– Addressing modes for main and alternate entry points

 – Classname

 – Class offset

– Requested alias names that were not assigned

– Status for alternate entry points and aliases. The status value can be one
of the following:

ADDED
The name did not exist in the directory and has been added.

REASSIGNED
The alias existed in the program module and has been reused
in the replacement.

REMOVED
The alias existed in the replaced program module, but has not
been respecified in the replacement.

REJECTED
The name was too long to be saved in the directory or already
existed and could not be replaced according to the binder
replacement rules.

STOLEN
The name existed as an alias to another module, but was reas-
signed to the module being saved.

| HIDDEN
| The name was added as a result of the ALIASES(ALL) option.
| AMODE is not listed for hidden aliases.

 Appendix D. Interpreting Binder Output 301

 Binder output

DFSMS/MVS V1 R4.ð BINDER 14:ðð:46 MONDAY JUNE 3ð, 1997

BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK

PROCESSING OPTIONS:

 ALIASES NO

 ALIGN2 NO

 AMODE UNSPECIFIED

 CALL NO

 CASE UPPER

 COMPAT UNSPECIFIED

 DCBS NO

 DYNAM NO

 EXITS: NONE

 FILL NONE

 HOBSET NO

 LET ð8

 LINECT ð6ð

 LIST ALL

 MAP YES

 MAXBLK ð3276ð

 MSGLEVEL ðð

 OVLY YES

 PRINT YES

 RES NO

 REUSABILITY UNSPECIFIED

 RMODE UNSPECIFIED

 STORENX NO

 TERM NO

 UPCASE: NO

 WKSPACE 96K,1ð24K

 XCAL YES

 XREF NO

SAVE OPERATION SUMMARY:

 MEMBER NAME TSTMOD

 LOAD LIBRARY PMSBC321.LOADOVLY

PROGRAM TYPE PROGRAM OBJECT(FORMAT 1)

 VOLUME SERIAL 1Pð3ð3

 DISPOSITION REPLACED

TIME OF SAVE ð9.37.ðð JUL 1, 1997

SAVE MODULE ATTRIBUTES

 AC ððð

 AMODE 31

 DC NO

 EDITABLE YES

EXCEEDS 16 MB NO

 EXECUTABLE YES

 MIGRATABLE YES

 OL NO

 OVLY NO

 PACK,PRIME NO,NO

 PAGE ALIGN NO

 REFR NO

 RENT YES

 REUS YES

 RMODE ANY

 SCTR NO

 SSI

 SYM GENERATED NO

 TEST NO

MODULE SIZE (HEX) ððð9EA78

Figure 83 (Part 1 of 2). Sample Binder Save Operation Summary

302 DFSMS/MVS V1R4 Program Management

 Binder output

 ENTRY POINT AND ALIAS SUMMARY:

NAME: ENTRY TYPE AMODE OFFSET STATUS

 IEWBDCTL MAIN_EP 31 ððð1132ð

IEWBIND TRUE ALIAS 31 ððð1132ð REASSIGNED

IEWBSTAK ALTERNATE ANY ððð676F8 REASSIGNED

Figure 83 (Part 2 of 2). Sample Binder Save Operation Summary

DFSMS/MVS V1 R4.ð BINDER 14:ðð:46 MONDAY JUNE 3ð, 1997

BATCH EMULATOR JOB(B422735W) STEP(BIND2) PGM= IEWBLINK

LOAD OPERATION SUMMARY:

 LOADED NAME TEST

TIME OF LOAD 14.ðð.46 JUNE 3ð, 1997

 LOAD PT VADDR(HEX) ððð31ððð

ENTRY PT VADDR(HEX) ððð31ððð

LOAD MODULE ATTRIBUTES:

 AMODE 24

 PAGE ALIGN NO

 RMODE 24

MODULE SIZE (HEX) ðððð14ðð

Figure 84. Sample Binder Load Operation Summary

| The Long-Symbol Cross-Reference Table
| The Long-Symbol Cross-Reference Table shows the relationships between long
| symbols and their abbreviations. A long symbol is longer than 16 bytes, and its
| abbreviation is 16 bytes. The abbreviated symbols are used in several binder
| reports for better readability.

| \\\ L O N G S Y M B O L A B B R E V I A T I O N T A B L E \\\

| ABBREVIATION LONG SYMBOL

| __ct__9Ex-lassFv := __ct__9ExpoClassFv

| __dt__9Ex-lassFv := __dt__9ExpoClassFv

| __sinit8ð-____Fv := __sinit8ððððððð__dfpft_worklib_source_c_x9554ð4e___Fv

| __sterm8ð-____Fv := __sterm8ððððððð__dfpft_worklib_source_c_x9554ð4e___Fv

| an_object-456789 := an_objectð123456789ð123456789ð123456789ð123456789

| \\\ E N D O F L O N G S Y M B O L A B B R E V . T A B L E \\\

| Figure 85. Sample Binder Long-Symbol Cross-Reference Table

 Appendix D. Interpreting Binder Output 303

 Binder output

The Message Summary Report
The Message Summary Report provides a table of unique message numbers
issued by the binder. Messages are separated by severity. Message numbers are
counted even if the message was suppressed by the message exit or the
MSGLEVEL option.

You can use message numbers from this report to scan the Input Event Log for
messages of interest. This is particularly helpful when modules are batched and
listings are extensive.

DFSMS/MVS V1 R4.ð BINDER 14:ðð:46 MONDAY JUNE 3ð, 1997

BATCH EMULATOR JOB(B422735W) STEP(BIND2) PGM= IEWBLDGO

IEW2ðð8I ðFð3 PROCESSING COMPLETED. RETURN CODE = 4.

MESSAGE SUMMARY REPORT

 SEVERE MESSAGES (SEVERITY = 12)

 NONE

 ERROR MESSAGES (SEVERITY = ð8)

 NONE

 WARNING MESSAGES (SEVERITY = ð4)

 2454

 INFORMATIONAL MESSAGES (SEVERITY = ðð)

 2ðð8 2278 23ð8 2322

 \\\\ END OF MESSAGE SUMMARY REPORT \\\\

304 DFSMS/MVS V1R4 Program Management

 Overlay Programs

Appendix E. Designing and Specifying Overlay Programs

The use of overlay programs is not recommended. The information in this
appendix is provided for compatibility only. Overlay programs are not supported in
PM-2 format. Program objects specifying OVLY cause the binder to create either a
load module or a PM-1 format program object, depending on the library type.

Ordinarily, when a program module produced by the binder is executed, all the
control sections of the module remain in virtual storage throughout execution. The
length of the module, therefore, is the sum of the lengths of all the control sections.
When virtual storage is not at a premium, this is the most efficient way to execute a
program. However, when a program approaches the limits of the available virtual
storage, you could consider using the overlay facilities of the binder.

In most cases, all that is needed to convert an ordinary program to an overlay
program is the addition of control statements to structure the module. You choose
the portions of the program that can be overlaid, and the system arranges to load
the required portions when needed during execution of the program.

When the binder overlay facility is requested, the program module is structured so
that, at execution time, certain control sections are loaded only when referenced.
When a reference is made from an executing control section to another, the system
determines whether the code required is already in virtual storage. If it is not, the
code is loaded dynamically and may overlay an unneeded part of the module
already in storage.

This chapter is divided into three sections that describe the design, specification,
and special considerations for overlay programs.

Note: This appendix refers to binder processing and output. These concepts also
apply to linkage editor processing, unless otherwise noted, with the exception that
the linkage editor cannot process program objects.

Design of an Overlay Program
The structure of an overlay module depends on the relationships among the control
sections within the module. Two control sections do not have to be in storage at
the same time to overlay each other. Such control sections are independent; they
do not reference each other either directly or indirectly. Independent control
sections can be assigned the same load addresses and are loaded only when ref-
erenced. For example, control sections that handle error conditions or unusual
data may be used infrequently and need not occupy storage unless in use.

Control sections are grouped into segments. A segment is the smallest functional
unit (one or more control sections) that can be loaded as one logical entity during
execution. The control sections required all the time are grouped into a special
segment called the root segment. This segment remains in storage throughout
execution of an overlay program.

When a particular segment is to be executed, any segments between it and the
root segment must also be in storage. This is a path. A reference from one
segment to another segment lower in a path is a downward reference; the segment
contains a reference to another segment farther from the root segment (see

 Copyright IBM Corp. 1991, 1997 305

 Overlay Programs

“Control Section Dependency” on page 306). Conversely, a reference from one
segment to another segment higher in a path (closer to the root segment) is an
upward reference.

A downward reference might cause overlay because the necessary segment might
not yet be in virtual storage. An upward reference does not cause overlay because
all segments between a segment and the root segment must be present in storage.

Several paths sometimes need the same control sections. This problem can be
solved by placing the control sections in another region. In an overlay structure, a
region is a contiguous area of virtual storage within which segments can be loaded
independently of paths in other regions. An overlay program can be designed in
single or multiple regions.

Single Region Overlay Program
To design an overlay structure, you should select those control sections that
receive control at the beginning of execution plus those that should always remain
in storage; these control sections form the root segment. The rest of the structure
is developed by determining the dependencies of the remaining control sections
and how they can use the same virtual storage locations at different times during
execution.

The remainder of this section discusses control section dependency, segment
dependency, the length of the overlay program, segment origin, communication
between segments, and overlay processing.

Control Section Dependency
Control section dependency is determined by the requirements of a control section
for a given routine in another control section. A control section is dependent upon
any control section from which it receives control or which processes its data. For
example, if control section C receives control from control section B, then C is
dependent upon B. That is, both control sections must be in storage before exe-
cution can continue beyond a given point in the program.

Assume that a program contains seven control sections, CSA through CSG, and
exceeds the amount of storage available for its execution. Before the program is
rewritten, it is examined to see if it could be placed into an overlay structure.
Figure 86 on page 307 shows the groups of dependent control sections in the
program (the arrows indicate dependencies).

306 DFSMS/MVS V1R4 Program Management

 Overlay Programs

 ┌──┐

│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │

 │ │ │ │ │ │ │ │

 │ │ CSA │ │ CSA │ │ CSA │ │

 │ │ │ │ │ │ │ │

│ └──────────────┘ └──────────────┘ └──────────────┘ │

│ & & & │

│ │ │ │ │

│ ┌──────┴───────┐ ┌──────┴───────┐ ┌──────┴───────┐ │

 │ │ │ │ │ │ │ │

 │ │ CSB │ │ CSB │ │ CSB │ │

 │ │ │ │ │ │ │ │

│ └──────────────┘ └──────────────┘ └──────────────┘ │

 └──────────&─────────────────────────────────&─────────────────────────────────&───────────┘

 ┌──────────┼─────────────────────────────────┼───────────┐ │

 │ ┌──────┴───────┐ ┌──────┴───────┐ │ ┌──────┴───────┐

│ │ │ │ │ │ │ │

 │ │ CSC │ │ CSC │ │ │ CSG │

│ │ │ │ │ │ │ │

 │ └──────────────┘ └──────────────┘ │ └──────────────┘

 └──────────&─────────────────────────────────&───────────┘ Dependent
 │ │ Group 3
 ┌──────┴───────┐ ┌──────┴───────┐

 │ │ │ │

 │ CSD │ │ CSF │

 │ │ │ │

 └──────────────┘ └──────────────┘

 & Dependent
 ┌──────┴───────┐ Group 2
 │ │

 │ CSE │

 │ │

 └──────────────┘

 Dependent
 Group 1

Figure 86. Control Section Dependencies

Each dependent group is also a path. That is, if control section CSG is to be exe-
cuted, CSB and CSA must also be in storage. Because CSA and CSB are in each
path, they must be in the root segment. Control section CSC is in two groups and
therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a tree structure. A
tree graphically shows how segments can use virtual storage at different times. It
does not imply the order of execution, although the root segment is the first to
receive control. Figure 87 on page 308 shows the tree structure for the dependent
groups shown in Figure 86. The structure has five segments and is contained in
one region.

 Appendix E. Designing and Specifying Overlay Programs 307

 Overlay Programs

 ─┬─

 │ ─┐

 CSA │

 │ │

 │ │

─┼─ ├─ Root Segment 1

 │ │

 │ │

 CSB │

 │ │

 │ ─┘

 ┌──────────────────────────────────┴──────────────────────────────┐

 │ ─┐ │ ─┐

 │ │ │ │

 │ │ │ │

CSC ├─ Segment 2 CSG ├─ Segment 5

 │ │ │ │

 │ │ │ │

 │ ─┘ │ ─┘

 ┌──────────────┴───────────────┐ ─┴─

 │ ─┐ │ ─┐

CSD │ │ │

 │ │ │ │

─┼─ ├─ Segment 3 CSF ├─ Segment 4

 │ │ │ │

CSE │ │ │

 │ ─┘ │ ─┘

─┴─ ─┴─

Figure 87. Single-Region Overlay Tree Structure

 Segment Dependency
When a segment is in virtual storage, all segments in its path are also in virtual
storage. Each time a segment is loaded, all segments in its path are loaded if they
are not already in virtual storage. In Figure 87, when segment 3 is in virtual
storage, segments 1 and 2 are also in virtual storage. However, if segment 2 is in
storage, this does not imply that segment 3 or 4 is in virtual storage because
neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not imply the
sequence in which the segments are executed. A segment can be loaded and
overlaid as many times as the logic of the program requires. However, a segment
cannot overlay itself. If a segment is modified during execution, that modification
remains only until the segment is overlaid.

Length of an Overlay Program
For purposes of illustration, assume the control sections in the sample program
have the following lengths:

Control Section Length (in bytes)
CSA 3000
CSB 2000
CSC 6000
CSD 4000
CSE 3000
CSF 6000
CSG 8000

If the program were not in overlay, it would require 32000 bytes of virtual storage.
In overlay, however, the program requires the amount of storage needed for the
longest path. In this structure, the longest path is formed by segments 1, 2, and 3,

308 DFSMS/MVS V1R4 Program Management

 Overlay Programs

because when they are all in storage they require 18000 bytes, as shown in
Figure 88.

 ──┬── ───┐

 │ │

 │ │

 CSA │

 3ððð │

 bytes │

 │ │

 │ │

─┼─ │ Root Segment 1

│ │ 5ððð bytes

 │ │

 CSB │

 2ððð │

 bytes │

 │ ───┘

 ┌──────────────────────────┴────────-------------------

 │ - ───┐

 │ ────┐ - │

 │ │ - │

 │ CSG │

CSC │ Segment 2 8ððð │ Segment 5

6ððð │ 6ððð bytes bytes │ 8ððð bytes

 bytes │ - │

 │ │ - │

 │ │ - ───┘

 │ ────┘ -

 ┌─────────────────────┴----------------------- -

 │ ────┐ - ────┐ -

CSD │ - │ │

4ððð │ - │ ───┴───

bytes │ - │

 │ │ CSF │

─┼─ │ Segment 3 6ððð │ Segment 4

 │ │ 7ððð bytes bytes │ 6ððð bytes

CSE │ - │

3ððð │ - │

bytes │ - │

 │ ────┘ - ────┘

─┴─ ─┴─

Figure 88. Length of an Overlay Module

Note: The length of the longest path is not the minimum requirement for an
overlay program. When a program is in overlay, certain tables are used, and their
storage requirements must also be considered. The storage required by these
tables is described in “Special Considerations” on page 322.

 Segment Origin
The binder assigns the relocatable origin of the root segment (the origin of the
program) at 0. The relative origin of each segment is determined by 0 plus the
length of all segments in the path. For example, the origin of segments 3 and 4 is
equal to 0 plus 6000 (the length of segment 2) plus 5000 (the length of the root
segment), or 11000. The origins of all the segments are as follows:

Segment Origin
1 0
2 5000
3 11000
4 11000
5 5000

 Appendix E. Designing and Specifying Overlay Programs 309

 Overlay Programs

The segment origin is also called the load point, because it is the relative location
at which the segment is loaded.

Figure 89 shows the segment origin for each segment and the way storage is used
by the sample program. The vertical bars indicate segment origin; any two seg-
ments with the same origin may use the same storage area. This figure also
shows that the longest path is that of segments 1, 2, and 3.

 ├───────────────────────────────┐

 │ Segment 5 │

 │ 8ððð bytes │

 ├───────────────────────────────┘

├───────────────────┐

│ Root Segment 1 │

│ 5ððð bytes │

├───────────────────┘

 ├───────────────────────┐

 │ Segment 4 │

 │ 6ððð bytes │

 ├───────────────────────┘

 ├───────────────────────┐

 │ Segment 2 │

 │ 6ððð bytes │

 ├───────────────────────┘

 ├───────────────────────────┐

 │ Segment 3 │

 │ 7ððð bytes │

 ├───────────────────────────┘

│ │

└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

ð 1 2 3 4 5 6 7 8 9 1ð 11 12 13 14 15 16 17 18 19 2ð

────────────── Relative Storage Location (in 1ððð byte increments) ─────────────5

Figure 89. Segment Origin and Use of Storage

References between Segments
Segments that can be in virtual storage simultaneously are considered inclusive.
Segments in the same region but not in the same path are considered exclusive;
they cannot be in virtual storage simultaneously. Figure 90 shows the inclusive
and exclusive segments in the sample program.

 ─┬─

 │

 Root

 Segment 1

 │

 │

 ┌────────────────────────┴───────────────────────┐

 │ │

 │ │

 Segment 2 Segment 5

 │ │

 │ │ Inclusive Segments

 ┌─────────────┴─────────────┐ ─┴─

│ │ 1, 2, and 3

Segment 3 Segment 4 1, 2, and 4

│ │ 1 and 5

 │ ─┴─

 │ Exclusive Segments

 ─┴─

2 and 5

3 and 4

3 and 5

4 and 5

Figure 90. Inclusive and Exclusive Segments

310 DFSMS/MVS V1R4 Program Management

 Overlay Programs

Segments upon which two or more exclusive segments are dependent are called
common segments. A segment common to two other segments is part of the path
of each segment. In Figure 90, segment 2 is common to segments 3 and 4, but
not to segment 5.

An inclusive reference is a reference between inclusive segments, from a segment
in storage to an external symbol in a segment that does not cause overlay of the
calling segment. An exclusive reference is a reference between exclusive seg-
ments, a reference from a segment in storage to an external symbol in a segment
that causes overlay of the calling segment.

Figure 91 shows the difference between an inclusive reference and an exclusive
reference. The arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be used
instead of exclusive references. Inclusive references between segments are
always valid and do not require special options. When inclusive references are
used, there is also less chance for error in structuring the overlay program cor-
rectly.

Exclusive References: An exclusive reference is made when the external refer-
ence in the requesting segment is to a symbol defined in a segment not in the path
of the requesting segment. Exclusive references are either valid or invalid.

An exclusive reference is valid only if there is also an inclusive reference to the
requested control section in a segment common to both the segment to be loaded
and the segment to be overlaid. The same symbol must be used in both the
common segment and the exclusive reference. In Figure 91, a reference from
segment B to segment A is valid because there is an inclusive reference from the
common segment to segment A. (An entry table in the common segment contains
the address of segment A. The overlay does not destroy this table.)

 ──┬──

 │

 │

 │

Inclusive │

Reference │

 ┌─────────────────────────5│ Common Segment

 │ │

 │ │

 │ │

 │ ┌─────────────────┴───┐

 │ │ │

 │ │ │

└───────5│%───────────────────────┐ ┌───────────────────────5│ Segment B

 │ │ │ │

│ └─────────┘ │

Segment A │ Exclusive │

│ Reference │

 │ │

 │ │

 │ │

 ──┴── ──┴──

Figure 91. Inclusive and Exclusive References

In this same figure, a reference from segment A to segment B is invalid because
there is no reference from the common segment to segment B. A reference from
segment A to segment B can be made valid by including, in the common segment,
an external reference to the symbol used in the exclusive reference to segment B.

 Appendix E. Designing and Specifying Overlay Programs 311

 Overlay Programs

Another way to eliminate exclusive references is to arrange the program so that the
references that cause overlay are made in a higher segment. For example, you
could eliminate the exclusive reference shown in Figure 91 by writing a new
module to be placed in the common segment. The new module's only function
would be to reference segment B. The code in segment A could then be changed
to reference the new module instead of segment B. Control then would pass from
segment A to the common segment, where the overlay of segment A by segment B
would be initiated.

If either valid or invalid exclusive references appear in the program, the binder con-
siders them errors unless one of the special options is used. These options are
described later in this section (see “Special Considerations” on page 322).

Notes:

1. During the execution of a program written in a higher level language such as
Fortran, COBOL, or PL/I, an exclusive call results in abnormal termination of
the program if the requested segment attempts to return control directly to the
invoking segment that has been overlaid.

2. If a program written in COBOL includes a segment that contains a reference to
a COBOL class test or TRANSFORM table, the segment containing the table
must be in either the root segment or a segment higher in the same path than
the segment containing the reference to the table.

 Overlay Process
The overlay process is initiated when a control section in virtual storage references
a control section not in storage. The control program determines the segment that
the referenced control section is in and, if necessary, loads the segment. When a
segment is loaded, it overlays any segment in storage with the same relative origin.
Any segments in storage that are lower in the path of the overlaid segment may
also be overlaid. An exclusive reference can also cause segments higher in the
path to be overlaid. No overlay occurs if a control section in storage references a
control section in another segment already in storage.

The portion of the control program that determines when overlay is to occur is the
overlay supervisor which uses special tables to determine when overlay is neces-
sary. These tables are generated by the binder and are part of the output program
module. The special tables are the segment table and the entry table(s).
Figure 92 on page 313 shows the location of the segment and entry tables in the
sample program.

312 DFSMS/MVS V1R4 Program Management

 Overlay Programs

 ─┬─

 │ ─┐

 SEGTAB│
 │ │

 ─┼─ │

 │ │

 CSA │

 │ │

─┼─ ├─ Root Segment 1

 │ │

 CSB │

 │ │

 ─┼─ │

 │ │

 ENTAB │

 │ ─┘

 ┌──────────────────────────────────┴──────────────────────────────┐

 │ ─┐ │ ─┐

 CSC │ │ │

 │ │ │ │

─┼─ ├─ Segment 2 CSG ├─ Segment 5

 │ │ │ │

 ENTAB│ │ │

 │ ─┘ │ ─┘

 ┌──────────────┴───────────────┐ ─┴─

 │ ─┐ │ ─┐

CSD │ │ │

 │ │ │ │

─┼─ ├─ Segment 3 CSF ├─ Segment 4

 │ │ │ │

CSE │ │ │

 │ ─┘ │ ─┘

─┴─ ─┴─

Figure 92. Location of Segment and Entry Tables in an Overlay Module

Because the tables are present in every overlay module, their size must be consid-
ered when planning the use of virtual storage. The storage requirements for the
tables are given in “Special Considerations” on page 322. A detailed discussion of
the segment and entry tables follows.

Segment Table: Each overlay program contains one segment table (SEGTAB);
this table is the first control section in the root segment. The segment table con-
tains information about the relationship of the segments and regions in the
program. During execution, the table also contains control information such as
which segments are in storage and which are being loaded.

Entry Table: Each segment that is not the last segment in a path may contain
one entry table (ENTAB); when present, this table is the last control section in a
segment.

When overlay is required, an entry in the table is created for a symbol to which
control is to be passed, provided the symbol is used as an external reference in the
requesting segment, and the symbol is defined in another segment either lower in
the path of the requesting segment or in another region. An ENTAB entry is not
created for any symbol already present in an entry table closer to the root segment
(higher in the path), or for a symbol defined higher in the path. (A reference to a
symbol higher in the path does not have to go through the control program because
no overlay is required.)

If an external reference and the symbol it references are in segments not in the
same path but in the same region, an exclusive reference was made. If the exclu-
sive reference is valid, an ENTAB entry for the symbol is present in the common
segment. Because the common segment is higher in the path of the requesting

 Appendix E. Designing and Specifying Overlay Programs 313

 Overlay Programs

segment, no ENTAB entry is created in the requesting segment. When the refer-
ence is executed, control passes through the ENTAB entry in the common
segment. That is, a branch to the location in the ENTAB entry causes the overlay
supervisor to be called to load the needed segments.

If the exclusive reference is invalid, no ENTAB entry is present in the common
segment. If the LET option is specified, an invalid exclusive reference causes
unpredictable results when the program is executed. Because no ENTAB entry
exists, control is passed directly to the relative address specified in the reference,
even though the requested segment may not be in virtual storage.

Multiple Region Overlay Program
If a control section is used by several segments, it is usually desirable to place that
control section in the root segment. However, the root segment can get so large
that the benefits of overlay are lost. If some of the control sections in the root
segment could overlay each other (except for the requirement that all segments in
a path must be in storage at the same time), the job may be a candidate for mul-
tiple region structure. Multiple region structures can also be used to increase
segment loading efficiency: processing can continue in one region while the next
path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are not in its path.
Within each region, the rules for single region overlay programs apply, but the
regions are independent of each other. A maximum of four regions can be used.

Figure 93 shows the relationship between the control sections in the sample
program and two new control sections: CSH and CSI. The two new control
sections are each used by two other control sections in different paths. Placing
CSH and CSI in the root segment makes the segment larger than necessary,
because CSH and CSI can overlay each other. The two control sections should
not be duplicated in two paths, because the binder automatically deletes the
second pair and an invalid exclusive reference may then result.

 ─┬─

 │

 CSA

 │

 ─┼─

 │

 CSB

 │

 ┌─────────────────────┴─────────────────────┐

 │ │

 CSC CSG

 │ │

 │ │

 ┌──────────────────┴───────────────────┐ │

 │ │ ┌────────┴──────────┐

CSD CSF │ ┌───────────────┐ │

 │ │ │ │ │ │

─┼─ ┌───────┴─────────┐ CSH CSI

 │ │ ┌─────────────┐ │ │ │ │ │

CSE │ │ │ │ │ │ ┌┘ └┐

 │ │ │ CSI │ │ └───┘

─┴─ CSH │ │ ┌┘ └┐

 │ │ ┌┘ └┐ └───┘

 │ │ └───┘

 │ │

 ┌┘ └┐

 └───┘

Figure 93. Control Sections Used by Several Paths

314 DFSMS/MVS V1R4 Program Management

 Overlay Programs

If the two control sections are placed in another region, however, they can be in
virtual storage when needed, regardless of the path being executed in the first
region. Figure 94 on page 315 shows all the control sections in a two-region
structure. Either path in region 2 can be in virtual storage regardless of the path
being executed in region 1. Segments in region 2 can cause segments in region 1
to be loaded without being overlaid themselves.

REGION 1 ─┬─

 │ ─┐

 CSA │

 │ │

─┼─ ├─ Root Segment 1

 │ │

 CSB │

 │ ─┘

 ┌────────────────┴──────────────────┐

 │ ─┐ │ ─┐

 │ │ │ │

CSC ├─ Segment 2 CSG ├─ Segment 5

 │ │ │ │

 │ ─┘ │ │

 ┌───────────┴─────────────┐ │ │

 │ ─┐ │ ─┐ │ ─┘

CSD │ CSF ├─ Segment 4 ─┴─

 │ │ │ │

─┼─ ├─ Segment 3 │ ─┘

 │ │ ─┴─

 CSE │

 │ ─┘

REGION 2 │ ─┐ │ ─┐

 │ │ │ │

CSH ├─ Segment 6 CSI ├─ Segment 7

 │ │ │ │

 │ ─┘ │ ─┘

 ─┴─ ─┴─

Figure 94. Overlay Tree for Multiple-Region Program

The relative origin of a second region is determined by the length of the longest
path in the first region (18000 bytes). Region 2, therefore, begins at 0 plus 18000
bytes. The relative origin of a third region would be determined by the length of the
longest path in the first region plus the longest path in the second region.

The virtual storage required for the program is determined by adding the lengths of
the longest path in each region. In Figure 94, if CSH is 4000 bytes and CSI is
3000 bytes, the storage required is 22000 bytes, plus the storage required by the
special overlay tables.

Care should be exercised when choosing multiple regions. There may be some
system degradation caused by the overlay supervisor being unable to optimize
segment loading when multiple regions are used.

 Appendix E. Designing and Specifying Overlay Programs 315

 Overlay Programs

Specification of an Overlay Program
Once you have designed an overlay structure, the program must be placed into that
structure. You indicate to the binder the relative positions of the segments, the
regions, and the control sections in each segment. Positioning is accomplished as
follows:

Segments
Are positioned by OVERLAY statements. In addition, the overlay statement
provides a means to equate each load point with a unique symbolic name.
Each OVERLAY statement begins a new segment.

Regions
Are also positioned by OVERLAY statements. You specify the origin of the first
segment of the region, followed by the word REGION in parentheses.

Control sections
Are positioned in the segment specified by the OVERLAY statement with which
they are associated in the input sequence. However, the sequence of the
control sections within a segment is not necessarily the order in which the
control sections are specified.

The input sequence of control statements and control sections should reflect the
sequence of the segments in the overlay structure from top to bottom, left to right,
and region by region. This sequence is illustrated in later examples.

In addition, several special options are used with overlay programs. These options
are specified on the EXEC statement for the binder job step and are described at
the end of this section.

Note: If a program module in overlay structure is to be reprocessed by the binder,
the OVERLAY statements and special options (such as OVLY) must be specified.
If the statements and options are not provided, the output program module will not
be in overlay structure.

The symbolic origin of every segment, other than the root segment, must be speci-
fied with an OVERLAY statement. The first time a symbolic origin is specified, a
load point is created at the end of the previous segment. That load point is log-
ically assigned a relative address at the doubleword boundary that follows the last
byte in the preceding segment. Subsequent use of the same symbolic origin indi-
cates that the next segment is to have its origin at the same load point.

In the sample single-region program, the symbolic origin names ONE and TWO are
assigned to the two necessary load points, as shown in Figure 94 on page 315.
Segments 2 and 5 are at load point ONE; segments 3 and 4 are at load point
TWO.

The following sequence of OVERLAY statements results in the structure in
Figure 95 on page 317. (The control sections in each segment are indicated by
name.):

316 DFSMS/MVS V1R4 Program Management

 Overlay Programs

Control section CSA

Control section CSB

 OVERLAY ONE

Control section CSC

 OVERLAY TWO

Control section CSD

Control section CSE

 OVERLAY TWO

Control section CSF

 OVERLAY ONE

Control section CSG

Note: The sequence of OVERLAY statements reflects the order of segments in
the structure from top to bottom and left to right.

 ─┬─

 │

 │

Root Segment 1

 │

 │

 │

 ┌───────────────────┴──────────────────┐

 │ ONE │

 │ │

 │ │

 Segment 2 │

 │ Segment 5

 │ │

 │ │

 ┌────────────┴───────────┐ │

 │ TWO │ │

 │ │ │

Segment 3 Segment 4 ─┴─

 │ │

 │ │

 ─┴─ ─┴─

Figure 95. Symbolic Segment Origin in Single-Region Program

 Region Origin
The symbolic origin of every region, other than the first, must be specified with an
OVERLAY statement. Once a new region is specified, a segment origin from a
previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is assigned to
region 2, as shown in Figure 96 on page 318. Segments 6 and 7 are at load point
THREE.

 Appendix E. Designing and Specifying Overlay Programs 317

 Overlay Programs

REGION 1
 ─┬─

 │

 │

Root Segment 1

 │

 │

 │

 ┌───────────────┴───────────────┐

│ ONE │

 │ │

 │ │

 Segment 2 │

 │ Segment 5

 │ │

 │ │

 ┌───────────┴──────────┐ │

 │ TWO │ │

 │ │ │

Segment 3 Segment 4 ─┴─

 │ │

 │ │

--

REGION 2 │ THREE │

 │ │

 Segment 6 Segment 7

 │ │

 │ │

 ─┴─ ─┴─

Figure 96. Symbolic Segment and Region Origin in Multiple-Region Program

If the following is added to the sequence for the single-region program, the multiple-
region structure is produced:

 .

 .

 .

 OVERLAY THREE(REGION)

Control section CSH

 OVERLAY THREE

Control section CSI

Control Section Positioning
After each OVERLAY statement, the control sections for that segment must be
specified. The control sections for a segment can be specified in one of three
ways:

1. By placing the object decks for each segment after the appropriate OVERLAY
statement

2. By using INCLUDE control statements for the modules containing the control
sections for the segment

3. By using INSERT control statements to reposition a control section from its
position in the input stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed in the
root segment; they can be repositioned with an INSERT statement. Control
sections from the automatic call library are also placed in the root segment. The
INSERT statement can be used to place these control sections in another specific
segment. Common areas in an overlay program are described in “Special
Considerations” on page 322.

318 DFSMS/MVS V1R4 Program Management

 Overlay Programs

An example of each of the three methods of positioning control sections follows.
Each example results in the structure for the single-region sample program. An
example is also given of repositioning control sections from the automatic call
library.

Using Object Decks
The primary input data set for this example contains an ENTRY statement and
seven object decks, separated by OVERLAY statements:

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'

 .

 .

 .

//SYSLIN DD \

 ENTRY BEGIN

Object deck for CSA

Object deck for CSB

 OVERLAY ONE

Object deck for CSC

 OVERLAY TWO

Object deck for CSD

Object deck for CSE

 OVERLAY TWO

Object deck for CSF

 OVERLAY ONE

Object deck for CSG

The EXEC statement illustrates that the OVLY parameter must be specified for
every overlay program to be processed by the binder.

Using INCLUDE Statements
The primary input data set for this example contains a series of control statements.
The INCLUDE statements in the primary input data set direct the binder to library
members that contain the control sections of the program.

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'

 .

 .

 .

//MODLIB DD DSNAME=USER.OBJLIB,DISP=OLD

//SYSLIN DD \

 ENTRY BEGIN

 INCLUDE MODLIB(CSA,CSB)

 OVERLAY ONE

 INCLUDE MODLIB(CSC)

 OVERLAY TWO

 INCLUDE MODLIB(CSD,CSE)

 OVERLAY TWO

 INCLUDE MODLIB(CSF)

 OVERLAY ONE

 INCLUDE MODLIB(CSG)

In this example, the control sections of the program are not part of the primary
input data set, but are represented in the primary input by the INCLUDE state-
ments. When an INCLUDE statement is processed, the appropriate control section
is retrieved from the library and processed.

 Appendix E. Designing and Specifying Overlay Programs 319

 Overlay Programs

Using INSERT Statements
When INSERT statements are used, the INSERT and OVERLAY statements may
either follow or precede all the input modules. However, the order of the control
sections in a segment is not necessarily the same as the order of the INSERT
statements for each segment. An example of each is given, as well as an example
of repositioning automatically called control sections.

Following All Input: The control statements can follow all the input modules, as
shown in the following example:

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'

 .

 .

 .

//SYSLIN DD DSNAME=USER.OBJECT,DISP=OLD

// DD \

 ENTRY BEGIN

 INSERT CSA,CSB

 OVERLAY ONE

 INSERT CSC

 OVERLAY TWO

 INSERT CSD,CSE

 OVERLAY TWO

 INSERT CSF

 OVERLAY ONE

 INSERT CSG

The primary input data set contains the object modules for the control sections, and
the input stream is concatenated to it.

Preceding All Input: The control statements can also precede all input modules,
as shown in the following example:

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'

//MODULES DD DSNAME=USER.OBJSEQ,DISP=OLD

 .

 .

 .

//SYSLIN DD \

 ENTRY BEGIN

 INSERT CSA,CSB

 OVERLAY ONE

 INSERT CSC

 OVERLAY TWO

 INSERT CSD,CSE

 OVERLAY TWO

 INSERT CSF

 OVERLAY ONE

 INSERT CSG

 INCLUDE MODULES

The primary input data set contains all the control statements for the overlay struc-
ture and an INCLUDE statement. The data set specified by the INCLUDE state-
ment contains all the object modules for the structure, and is a sequential data set.

320 DFSMS/MVS V1R4 Program Management

 Overlay Programs

Repositioning Automatically Called Control Sections: The INSERT statement
can also be used to move automatically called control sections from the root
segment to the desired segment. This is helpful when control sections from the
automatic call library are used in only one segment. By moving such control
sections, the root segment will contain only those control sections used by more
than one segment.

When a program is written in a higher level language, special control sections are
called from the automatic call library. Assume that the sample program is written in
COBOL and that two control sections (ILBOVTR0 and ILBOSCH0) are called auto-
matically from SYS1.COBLIB. Ordinarily, these control sections are placed in the
root segment. However, INSERT statements are used in the following example to
place these control sections in segments other than the root segment.

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'

//MODLIB DD DSNAME=USER.OBJLIB,DISP=OLD

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

 .

 .

 .

//SYSLIN DD \

 ENTRY BEGIN

 INCLUDE MODLIB(CSA,CSB)

 OVERLAY ONE

 INCLUDE MODLIB(CSC)

 OVERLAY TWO

 INCLUDE MODLIB(CSD,CSE)

 INSERT ILBOVTRð

 OVERLAY TWO

 INCLUDE MODLIB(CSF)

 INSERT ILBOSCHð

 OVERLAY ONE

 INCLUDE MODLIB(CSG)

As a result, segments 3 and 4 contain ILBOVTR0 and ILBOSCH0 respectively.

This example also combines two ways of specifying the control sections for a
segment.

 Special Options
The binder provides three special job step options (OVLY, LET, and XCAL) for the
overlay program. These options are specified on the EXEC statement for the
binder job step. They must be specified each time a program module in overlay
structure is reprocessed by the binder.

 OVLY Option
The OVLY option must be specified for every overlay program. If the option is
omitted, all the OVERLAY and INSERT statements are considered invalid, and the
output module is not an overlay structure. If, in addition, the LET option is not
specified, the output module is marked not executable.

 Appendix E. Designing and Specifying Overlay Programs 321

 Overlay Programs

 LET Option
The LET option permits marking the output module executable even though certain
error conditions were found during binder processing. When LET is specified, any
exclusive reference (valid or invalid) is accepted. At execution time, a valid exclu-
sive reference is executed correctly; an invalid exclusive reference usually causes
unpredictable results.

Also with the LET option, unresolved external references do not prevent the module
from being marked executable. This could be helpful when part of a large program
is ready for testing; the segments to be tested may contain references to segments
not yet coded. If LET is specified, the program can be executed to test those parts
that are finished (as long as the references to the absent segments are not exe-
cuted). If the LET option is not specified, these unresolved references cause the
module to be marked not executable.

 XCAL Option
With the XCAL option, a valid exclusive call is not considered an error, and the
program module is marked executable. However, unless the LET option is speci-
fied, other errors could cause the module to be marked not executable. In this
case, the XCAL option is not required.

AMODE and RMODE Options
If the OVLY option is specified, the AMODE and RMODE options are ignored, and
a diagnostic message is issued to that effect. Overlay programs are assigned as
RMODE=24 and AMODE=24.

 Special Considerations
This section discusses several special considerations that affect overlay programs.
These considerations include the handling of common areas, automatic replace-
ment of control sections, special storage requirements, and overlay communication.

 Common Areas
When common areas (blank or named) are encountered in an overlay program, the
common areas are collected as described previously (that is, the largest blank or
identically named common area is used). The final location of the common area in
the output module depends on whether INSERT statements were used to structure
the program.

If INSERT statements are used to structure the overlay program, a named common
area should either be part of the input stream in the segment to which it belongs or
it should be placed there with an INSERT statement.

Because INSERT statements cannot be used for blank common areas, a blank
common area should always be part of the input stream in the segment to which it
belongs.

If INSERT statements are not used, and the control sections for each segment are
placed or included between OVERLAY statements, the binder “promotes” the
common area automatically. The common area is placed in the common segment
of the paths that contain references to it so that the common area is in storage
when needed. The position of the promoted area in relation to other control
sections within the common segment is unpredictable.

322 DFSMS/MVS V1R4 Program Management

 Overlay Programs

If a common area is encountered in a module from the automatic call library, auto-
matic promotion places the common area in the root segment. In the case of a
named common area, this may be overridden by use of the INSERT statement.

Assume that the sample program is written in Fortran and common areas are
present as shown in Figure 97. Further assume that the overlay program is struc-
tured with INCLUDE statements between the OVERLAY statements so that auto-
matic promotion occurs.

 ─┬─

 │ ─┐

 │ │

 CSA │

│ ├─ Root Segment 1

 ─┼─ │

 │ │

 CSB │

 │ ─┘

 ┌────────────────────────┴──────────────────────────┐

 │ ─┐ │ ─┐

Blank Common │ Blank Common │
 │ │ │ │

─┼─ ├─ Segment 2 ─┼─ │

│ │ │ ├─ Segment 5

 CSC │ CSG │

 │ ─┘ │ │

 ┌───────────────┴───────────────────┐ ─┼─ │

 │ ─┐ │ ─┐ │ │

Named Common A │ Named Common A Named Common B │
 │ │ │ │ │ ─┘

 ─┼─ │ ─┼─ │ ─┴─

 │ │ │ │

 CSD │ CSF │

│ ├─ Segment 3 │ ├─ Segment 4

 ─┼─ │ ─┼─ │

 │ │ │ │

CSE │ Named Common B │
 │ ─┘ │ ─┘

 ─┴─ ─┴─

Figure 97. Common Areas Before Processing

Segments 2 and 5 contain blank common areas. Segments 3 and 4 contain
named common area A. Segments 4 and 5 contain named common area B.
During binder processing, the blank common areas are collected and the larger
area is promoted to the root segment (the first common segment in the two paths).
The common areas named A are collected and the larger area is promoted to
segment 2. The common areas named B are collected and promoted to the root
segment. Figure 98 on page 324 shows the location of the common areas after
processing by the binder.

 Appendix E. Designing and Specifying Overlay Programs 323

 Overlay Programs

 ─┬─

 │ ─┐

 CSA │

 │ │

 ─┼─ │

 │ │

 CSB │

 │ │

─┼─ ├─ Root Segment 1

 │ │

 Blank Common │

 │ │

 ─┼─ │

 │ │

Named Common B │
 │ ─┘

 ┌────────────────────────┴──────────────────────────┐

 │ ─┐ │ ─┐

 CSC │ │ │

 │ │ │ │

─┼─ ├─ Segment 2 CSG ├─ Segment 5

 │ │ │ │

Named Common A │ │ │

 │ ─┘ │ ─┘

 ┌───────────────┴───────────────────┐ ─┴─

 │ ─┐ │ ─┐

CSD │ CSF ├─ Segment 4

 │ │ │ ─┘

─┼─ ├─ Segment 3 ─┴─

 │ │

 CSE │

 │ ─┘

 ─┴─

Figure 98. Common Areas After Processing

 Automatic Replacement
When identically named control sections appear in the modules of an overlay struc-
ture, the second and any subsequent control sections with that name are ignored.
This occurs whether the modules are in segments in the same path or in exclusive
segments. Resolution of external references may therefore cause invalid exclusive
references. Invalid exclusive references cause the binder to mark the output
module not executable unless the exclusive call (XCAL) option is specified on the
EXEC statement (see “XCAL: Exclusive Call Option” on page 126).

 Storage Requirements
The virtual storage requirements for an overlay program include the items placed in
the program by the binder.

The items that the binder places in an overlay program are the segment table, entry
tables, and other control information. Their size must be included in the minimum
requirements for an overlay program, along with the storage required by the longest
path and any control sections from the automatic call library.

Every overlay program has one segment table in the root segment. The storage
requirements are:

Length of SEGTAB = (4n + 24) bytes

Where n is the number of segments in the program.

324 DFSMS/MVS V1R4 Program Management

 Overlay Programs

Some segments will have an entry table. The requirements of the entry tables in
the segments in the longest path must be added to the storage requirements for
the program. The requirements for an entry table are:

Length of ENTAB = 12(x + 1) bytes

Where x is the number of entries in the table.

Finally, a NOTE list is required to execute an overlay program. The storage
requirements are:

Length of NOTELST = (4n + 8) bytes

Where n is the number of segments in the program.

 Overlay Communication
Several ways of communicating between segments of an overlay program are dis-
cussed in this section. A higher level or assembler language program may use a
CALL statement or a CALL macro instruction, respectively, to cause control to be
passed to a symbol defined in another segment. The CALL may cause the
segment to be loaded if it is not already present in storage. An assembler lan-
guage program may also use three additional ways to communicate between
segments:

1. A branch instruction which causes a segment to be loaded and control to be
passed to a symbol defined in that segment.

2. A segment load (SEGLD) macro instruction, which requests loading of a
segment. Processing continues in the requesting segment while the requested
segment is being loaded.

3. A segment load and wait (SEGWT) macro instruction, which requests loading of
a segment. Processing continues in the requesting segment only after the
requested segment is loaded.

Any of the four methods may be used to make inclusive references. Only the
CALL and branch may be used to make exclusive references. Do not use the
SEGLD or the SEGWT macro instructions to make exclusive references. Both
imply that processing is to continue in the requesting segment. An exclusive refer-
ence leads to erroneous results when the program is executed.

CALL Statement or CALL Macro Instruction
A CALL statement or a CALL macro instruction refers to an external name in the
segment to which control is to be passed. The external name must be defined as
an external reference in the requesting segment. In assembler language, the name
must be defined as a 4-byte V-type address constant. The high-order bit is
reserved for use by the control program and must not be altered during execution
of the program.

When a CALL is used, the requested segment and any segments in its path are
loaded if they are not part of the path already in virtual storage. After the segment
is loaded, control is passed to the requested segment at the location specified by
the external name.

 Appendix E. Designing and Specifying Overlay Programs 325

 Overlay Programs

A CALL between inclusive segments is always valid. A return can be made to the
requesting segment by another source language statement, such as RETURN. A
CALL between exclusive segments is valid if the conditions for a valid exclusive
reference are met; a return from the requested segment can be made only by
another exclusive reference, because the requesting segment has been overlaid.

 Branch Instruction
Any of the branching conventions shown in Figure 99 can be used to request
loading and branching to a segment. As a result, the requested segment and any
segments in its path are loaded if they are not part of the path already in virtual
storage. Control is then passed to the requested segment at the location specified
by the address constant placed in general register 15.

The address constant must be a 4-byte V-type address constant. The high-order
byte is reserved for use by the control program and must not be altered during
execution of the program. The BAS and BASR instructions cannot be used.

A branch between inclusive segments is always valid. A return may be made using
the address stored in Rn. A branch between exclusive segments is valid if the

Figure 99. Branch Sequences for Overlay Programs

Example Name 1 Operation Operand 2, 3

1 L
BALR

R15,=V(name)
Rn,R15

2

...

ADCON

L
BALR

DC

R15,ADCON
Rn,R15

V(name)

3 L
BAL

R15,=V(name)
Rn,0(0,R15)4

4 L
BAL

R15,=V(name)
Rn,0(R15)5

56 L
BCR

R15,=V(name)
15,R15

66 L
BC

R15,=V(name)
15,0(0,R15)4

76 L
BC

R15,=V(name)
15,0(R15)5

Notes:

1. When the name field is blank, specification of a name is optional.

2. R15 must hold a 4-byte address constant that is the address of an entry name or a
control section name in the requested segment. The address constant must be loaded
into the standard entry point register, register 15.

3. Rn is any other register and is used to hold the return address. This register is usually
register 14.

4. This may also be written so that the index register is loaded with the address constant;
the other fields must be zero.

5. In this format, the base register must be loaded with the address constant; the displace-
ment must be zero.

6. This example is an unconditional branch; other conditions are also allowed.

326 DFSMS/MVS V1R4 Program Management

 Overlay Programs

conditions for a valid exclusive reference are met; a return can be made only by
another exclusive reference.

Segment Load (SEGLD) Macro Instruction
The Segment Load macro instruction provides overlap between segment loading
and processing within the requesting segment. As a result of using any of the
examples in Figure 100, the loading of the requested segment and any segments
in its path is initiated when they are not part of the path already in virtual storage.
Processing then resumes at the next sequential instruction in the requesting
segment while the segment or segments are being loaded. Control may be passed
to the requested segment with either a CALL or a branch, as shown in Examples 1
and 2, respectively. A SEGWT instruction can be used to ensure that the data in
the control section specified by the external name is in virtual storage before proc-
essing resumes, as shown in Example 3.

The external name specified in the SEGLD macro instruction is defined with a
4-byte V-type address constant. The high-order bit is reserved for use by the
control program and must not be altered during execution of the program.

Figure 100. Use of the SEGLD Macro Instruction

Example Name 1 Operation Operand 2, 3

1 SEGLD
CALL

external name
external name

2 SEGLD
branch

external name
external name

3

SEGLD
SEGWT
L

external name
external name
Rn,=V(name)

Notes:

1. When the name field is blank, specification of a name is optional.

2. External name is an entry name or a control section name in the requested segment.

3. Rn is any other register and is used to hold the return address. This register is usually
register 14.

Segment Wait (SEGWT) Macro Instruction
The SEGWT macro is used to stop processing in the requesting segment until the
requested segment is in virtual storage.

As a result of using any of the examples in Figure 101 on page 328, no further
processing takes place until the requested segment and all segments in its path are
loaded when not already in virtual storage. Processing resumes at the next
sequential instruction in the requesting segment after the requested segment has
been loaded.

 Appendix E. Designing and Specifying Overlay Programs 327

 Overlay Programs

If the SEGWT and SEGLD macro instructions are used together, overlap occurs
between processing and segment loading. Use of the SEGWT macro instruction
serves as a check to see that the necessary information is in storage when it is
finally needed (see Example 1 in Figure 101). In Example 2 in Figure 101, no
overlap is provided. The SEGWT macro instruction initiates loading, and proc-
essing is stopped in the requesting segment until the requested segment is in
virtual storage.

The external name specified in the SEGWT macro instruction must be defined with
a 4-byte V-type address constant. The high-order bit is reserved for use by the
control program and must not be altered during execution of the program.

If the contents of a virtual storage location in the requested segment are to be proc-
essed, the entry name of the location must be referred to by an A-type address
constant.

Figure 101. Use of the SEGWT Macro Instruction

Example Name 1 Operation Operand 2, 3

1

ADCON

SEGLD
SEGWT
L
branch
DC

external name
external name
Rn,ADCON

V(name)

2 SEGWT
L

external name
Rn,=V(name)

Notes:

1. When the name field is blank, specification of a name is optional.

2. External name is an entry name or a control section name in the requested statement.

3. Rn is any other register and is used to hold the return address. This register is usually
register 14.

328 DFSMS/MVS V1R4 Program Management

 Transport Utility

Appendix F. Using the Transport Utility

The transport utility (IEWTPORT) is a program management service with very spe-
cific and limited function. It obtains (via the binder) a program object from a PDSE
and converts it into a “transportable program file” in a sequential (non-executable)
format. It also re-constructs the program object from a transportable program file
and stores it back into a PDSE (via the binder).

| Note: You would only use this utility if you wanted to access the program
| data in a program object on a system where program management was NOT
| available. It should be emphasized that the purpose of IEWTPORT is very
| limited. Its use is discouraged. It is not intended to replace or provide an
| alternative to IEBCOPY, which is the appropriate utility for copying load
| modules and program objects. It is simply a service for allowing the trans-
| port of program data for other reasons than binding or loading. This utility
| will not be enhanced further and may be withdrawn at some future date.

| You create a transportable copy of the program object using IEWTPORT, then
| send the transportable copy to the system without program management services.
| A program on the target system can access the transportable copy using QSAM.
| Section “Logical Structure of a Transportable File” on page 333 contains a
| description of the transportable file format. Macro IEWTFMT contains the map-
| pings for the transportable file records.

If you want to load, bind, or execute a transportable program, you must first re-
create the program object by executing IEWTPORT on a system with program
management services installed. No programming interfaces exist to perform any of
these operations on transportable programs.

IEWTPORT does not support load modules, nor does it support program objects in
overlay format.

 Executing IEWTPORT
IEWTPORT is an executable program. You can use a batch job to invoke the
IEWTPORT utility. The following is the JCL syntax:

 //PROGA EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=input.dset[(member name)],DISP=SHR
 //SYSUT2 DD DSN=output.dset,DISP=(NEW,CATLG,DELETE),...
 //SYSPRINT DD SYSOUT=\

input.dset[(member name)]
The name of a PDSE program library (with or without a member specification)
or the name of a sequential data set containing a transportable program.

output.dset
The name of a PDSE program library or the name of a sequential data set
containing a transportable program.

 Copyright IBM Corp. 1991, 1997 329

 Transport Utility

Defining the Data Sets
SYSPRINT is a required data set. It contains IEWTPORT user messages, binder
messages, and processing information.

SYSUT1 defines the required input data set, and SYSUT2 defines the required
output data set. If SYSUT1 defines a PDSE program library, then SYSUT2 must
define a sequential data set (sequential and extended format data sets are both
supported). If SYSUT1 defines a sequential data set, then SYSUT2 must define a
PDSE program library. The SYSUT1 member name specification may be a primary
name or an alias. If an alias name is specified, IEWTPORT will convert the corre-
sponding primary name.

If SYSUT1 defines a PDSE program library and SYSUT2 defines a sequential data
set, IEWTPORT builds one or more transportable programs. If you include a
member name, IEWTPORT builds a transportable program for that member only. If
you specify a program library without a member name, IEWTPORT converts the
entire program library.

If SYSUT1 defines a sequential data set containing a transportable program, and
SYSUT2 defines a PDSE program library, IEWTPORT re-creates the corresponding
program object with its original member name, aliases, and attributes. If you
specify a member name in the SYSUT2 statement and that member name already
exists in the output library, IEWTPORT replaces the old member name. If you
specify a member name that does not exist in the output library, IEWTPORT fails
with no messages.

| IEWTPORT writes the sequential data set containing transportable programs with a
| logical record length of 4096 bytes and a record format of variable block
| (LRECL=4096 and RECFM=VB). If you specify the JCL parameters BLKSIZE,

LRECL, or RECFM, they are ignored.

Allocating Space for the SYSUTn Data Sets
The disk or tape space requirement for the new data set defined by the SYSUT2
DD statement is approximately equal to that of the input data. If you are converting
a single program object to its transportable format, allocate the same number of
bytes as currently used by the PDSE member. If you are converting an entire
library, allocate the same number of bytes as currently used by the PDSE program
library. When converting a transportable file back to one or more program objects,
the disk space requirement is approximately equal to the size of the transportable
file.

Transporting Selected Members
You can create a sequential data set which contains transportable programs for all
members of a PDSE program library. In this case, you can re-create the PDSE
program library from the sequential data set.

If you wish to create transportable programs for only some of the members of a
program library, you may copy all of the selected program objects to a new PDSE
program library and then convert the entire new PDSE to a single transportable file.
Alternatively, you can invoke IEWTPORT once for each member and create a
transportable file for each.

330 DFSMS/MVS V1R4 Program Management

 Transport Utility

If you attempt to convert an empty library to its transportable format, IEWTPORT
creates an empty transportable file.

Sample IEWTPORT Invocations
Below are some JCL examples for invoking IEWTPORT.

Convert a Program Object to a Transportable Program

 //CONV1 EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=JUNE.CALCS(CALC1),DISP=SHR

 //SYSUT2 DD DSN=JUNE.CALC1.TRANS,DISP=(NEW,CATLG,DELETE),

| // SPACE=(TRK,(2,1)),UNIT=SYSDA

 //SYSPRINT DD SYSOUT=\

The data set JUNE.CALCS is a PDSE program library. IEWTPORT converts the
program object CALC1 and writes it to a sequential data set called
JUNE.CALC1.TRANS. The messages generated by IEWTPORT are written to the
SYSPRINT data set.

Convert an Entire Program Library

 //CONVALL EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=YEARLY.CALCS,DISP=SHR

 //SYSUT2 DD DSN=ALL.CALCS.TRANS,DISP=OLD

 //SYSPRINT DD SYSOUT=\

The data set YEARLY.CALCS is a PDSE program library with several members in
it. ALL.CALCS.TRANS has been previously allocated as a sequential data set.
IEWTPORT converts the entire YEARLY.CALCS program library to a single
sequential file, ALL.CALCS.TRANS. At completion, ALL.CALCS.TRANS consists of
a series of transportable programs.

Convert a Transportable Program to a Single Program Object

 //RECREAT1 EXEC PGM=IEWTPORT

 //SYSUT1 DD DSN=FEB.CALC2.TRANS,DISP=SHR

 //SYSUT2 DD DSN=FEB.CALCS,DISP=OLD

 //SYSPRINT DD SYSOUT=\

 //IEWTRACE DD SYSOUT=\

The data set FEB.CALC2.TRANS is a sequential data set containing one transport-
able program. FEB.CALCS is the name of a PDSE program library. IEWTPORT
re-creates the program object from the transportable program read in from the
sequential data set, FEB.CALC2.TRANS. The program object is restored with its
original name, alias names, and attributes.

 Appendix F. Using the Transport Utility 331

 Transport Utility

Messages, Errors, and Return Codes

Messages and Codes
The IEWTPORT messages are numbered in the range of 3000-3100, and the appli-
cation identifier is IEW. The severity codes and the letter suffix to the message
number are the same as those for the binder. See OS/390 MVS System Mes-
sages, Vol 4 (IEC-IFD) for the message text and the explanations.

 Errors
When creating a transportable file, a severe error may cause the last written trans-
portable program to be unusable.

If the time and date are not available due to an error, they are not recorded in the
header. IEWTPORT does not generate a return code or message for this condi-
tion.

If you specify the BLKSIZE, LRECL, RECFM, PARM, or output member name in
your JCL, they are ignored without any warning message or return code.

If you specify an incorrect member name for either input or output, IEWTPORT fails
with no messages.

 Return Codes
Figure 102. IEWTPORT Return Codes

Return
Code

Description

00 Informational: IEWTPORT finished processing normally.

04 Warning: An exceptional condition has been detected, but should have
no adverse effect on the conversion process. Processing continues
with no user action required. The output should be verified to assure
completeness and correctness of the conversion.

08 Error: IEWTPORT has detected an error in the user data such as an
incorrect program object. IEWTPORT has taken corrective action. A
message is issued and processing continues, if appropriate. The integ-
rity of any output data is not assured.

12 Severe: IEWTPORT encountered an error which renders the output
unusable. The error may be caused by conditions such as an improper
execution environment or an I/O error. IEWTPORT has taken correc-
tive action. The standard action is to issue a message and terminate
processing.

16 Terminating: Processing ends immediately. This return code may be
issued due to the lack of minimum requirements for execution of
IEWTPORT, such as a missing ddname or the lack of storage. It may
be returned after the failure of a system service or macro invoked by
IEWTPORT. IEWTPORT has taken corrective action. The standard
action is to issue a message and terminate processing. The output, if
any, should be considered unusable.

332 DFSMS/MVS V1R4 Program Management

 Transport Utility

Logical Structure of a Transportable File

General-use programming interface

A transportable file is a sequential file containing one or more transportable pro-
grams (converted program objects). It consists of a header, one or more transport-
able programs, and a trailer. The header indicates the beginning of the file, and
the trailer indicates the end of the file. A transportable program contains the
program object data. The overall file structure is shown in Figure 103. Each of the
partitions indicated in the figure represents a logical record. The content and struc-
ture of each type of the logical records is described in the remainder of this section.

Transportable file logical record layout

transportable program 1

 ┌──┐

 6 6

┌──────┐ ┌─────────────┐ ┌─────┬────┐ ┌─────┬────┐ ┌─────┬────┐

│ │ │transportable│ │data │ │ │data │ │ │data │ │

│Header│ │program │ │hdr │data│ │hdr │data│ . . . │hdr │data│ ─┼─

│ │ │descriptor │ │ │ │ │ │ │ │ │ │

└──────┘ └─────────────┘ └─────┴────┘ └─────┴────┘ └─────┴────┘

record 1 record 2 record 3 record 4 record n

transportable program 2

 ┌──┐

 6 6

┌─────────────┐ ┌─────┬────┐ ┌─────┬────┐ ┌─────┬────┐

│transportable│ │data │ │ │data │ │ │data │ │

│program │ │hdr │data│ │hdr │data│ . . . │hdr │data│ ─┼─

 │descriptor │ │ │ │ │ │ │ │ │ │

└─────────────┘ └─────┴────┘ └─────┴────┘ └─────┴────┘

 .

 .

 .

transportable program n

 ┌──┐

 6 6

┌─────────────┐ ┌─────┬────┐ ┌─────┬────┐ ┌─────┬────┐

│transportable│ │data │ │ │data │ │ │data │ │

│program │ │hdr │data│ │hdr │data│ . . . │hdr │data│ ─┼─

 │descriptor │ │ │ │ │ │ │ │ │ │

└─────────────┘ └─────┴────┘ └─────┴────┘ └─────┴────┘

┌───────┐

│ │

│Trailer│

│ │

└───────┘

Figure 103. Transportable File Structure

 Appendix F. Using the Transport Utility 333

 Transport Utility

Mapping Macro IEWTFMT
An assembler language mapping macro, IEWTFMT, is available which contains
mappings of the logical records of a transportable file. Figure 104 lists the names
of the DSECT maps and the record mapped by each DSECT.

You can use this macro in your program, provided you assemble the program with
the Assembler H or higher program product and provided the IEWTFMT macro is
available in a macro library.

Figure 104. Transportable Program Record

DSECT name Mapped record

TFMT_THHEAD Header

TFMT_TTTRAIL Trailer

TFMT_TPDESC Descriptor

TFMT_TDALIAS Alias data record

TFMT_TDATTRIBS Attributes data record

TFMT_TDITEM Item data record

 Header
The header contains information such as the time of day and date when
IEWTPORT created the transportable file and the data set name of the PDSE
program library. It is mapped by TFMT_THHEAD, which is shown in Figure 105.

Figure 105. Transportable File Header

TFMT_THHEAD DSECT Maps the header record

TFMT_THEYE DS CL8 Transportable file identifier. Contains
string 'IEWTPORT'

TFMT_THLVL DS FL1 Current level number: 1

TFMT_THRS1 DS CL3 Reserved

TFMT_THLEN DS FL4 Record length including the varying
length of the data set name

TFMT_THDS_OFF DS FL2 Data set name offset with respect to
the beginning of TFMT_THHEAD

TFMT_THRS2 DS FL2 Reserved

TFMT_THDATE DS CL10 Date as MM/DD/YYYY

TFMT_THTIME DS CL8 Time as HH:MM:SS

TFMT_THRS3 DS FL2 Reserved

TFMT_THDSNAME DSECT Maps the data set name

TFMT_THDSN_LEN DS FL2 Length of the data set name

TFMT_THDSN_VAL DS CL44 Data set name, varying, with a
maximum length of 44 bytes

334 DFSMS/MVS V1R4 Program Management

 Transport Utility

 Trailer
The trailer indicates the end of the transportable program file. It is mapped by
TFMT_TTTRAIL, which is shown in Figure 106.

Figure 106. Transportable File Trailer

TFMT_TTTRAIL DSECT Maps trailer record

TFMT_TTEYE DS CL8 Trailer record identifier. Contains
string 'IEWTPTRL'

TFMT_TTLVL DS FL1 Current level number: 1

TFMT_TTRS1 DS FL3 Reserved

TFMT_TTLEN DS FL4 Trailer record length

TFMT_TTNUM DS FL4 Number of transportable programs in
this transportable file.

 Transportable Program
Each transportable program contains a descriptor and a body. A transportable
program descriptor (TP descriptor) indicates the beginning of a transportable
program and contains the primary name. The body contains the data which is
required to rebuild the program object. The overall structure of a transportable
program is shown in Figure 107. The TP descriptor record is mapped by
TFMT_TPDESC, which is shown in Figure 108 on page 336.

Transportable File Format

┌─────┬──────┬────────┬──────┬────────┬───────┬──────┬────────┬─────┐

│ │ │ │ │ │ │ │ │ │

│ H │ TP │ body │ TP │ body │ . . . │ TP │ body │ T │

│ │ desc │ │ desc │ │ │ desc │ │ │

│ │ │ │ │ │ │ │ │ │

└─────┴──────┴────────┴──────┴────────┴───────┴──────┴────────┴─────┘

& & & & &

│ transportable │ transportable │ │ transportable │

│ program │ program │ │ program │

│ A │ B │ │ n │

Figure 107. Transportable Program Structure

 Appendix F. Using the Transport Utility 335

 Transport Utility

Figure 108. Transportable Program Descriptor Map

TFMT_TPDESC DSECT Maps the descriptor record

TFMT_TPEYE DS CL8 Transportable program descriptor iden-
tifier. Contains string 'IEWTPDSC'

TFMT_TPLVL DS FL1 Level number: 1

TFMT_TPPOV DS FL1 Program object version

TFMT_TPRS1 DS CL2 Reserved

TFMT_TPLEN DS FL4 Record length including the varying
member name

TFMT_TPNAME_OFF DS FL2 Offset to the primary (member) name
relative to the beginning of
TFMT_TPDESC

TFMT_TPRS2 DS FL2 Reserved

TFMT_TPMEMNAM DSECT Maps primary name

TFMT_TPMEM_LEN DS FL2 Length of the primary name

TFMT_TPMEM_VAL DS CL8 Primary (member) name, varying, with
a maximum length of eight bytes.

 Body
The body consists of a series of data records. Each data record has a data header
which describes the data that follows it. The data type is classified as either
ALIAS, ITEM, or ATTRIBUTES. The data header is mapped by one of three dif-
ferent data sections of the IEWTFMT mapping macro, depending upon the data
type.

 Body Structure

┌───────┬────────┬───────┬────────┬───────────┬───────┬────────┐

│ │ │ │ │ │ │ │

│ data │ │ data │ │ │ data │ │

│header │ data │header │ data │ . . . │header │ data │

│ 1 │ │ 2 │ │ │ n │ │

│ │ │ │ │ │ │ │

└───────┴────────┴───────┴────────┴───────────┴───────┴────────┘

Figure 109. Transportable Program Body Structure

In the body of a transportable program, the first records are alias records, followed
by the attributes record, and then the item records. There can be multiple alias and
item records but only one attributes record.

The maximum size of a data record cannot exceed the sequential data set block
size of 4KB. Items larger than 4KB span several blocks.

ALIAS data type: An ALIAS data type indicates that the data is an alias name.
For the alias data type, the alias name and AMODE are stored after the data
header. Figure 110 on page 337 depicts the format of the alias data type. The
alias data header is mapped by the TFMT_TDALIAS section of the IEWTFMT
macro and shown in Figure 111 on page 337.

336 DFSMS/MVS V1R4 Program Management

 Transport Utility

 offset

 ┌──────┐

 │ 6

 ┌─┴─────┬───────────┬───────┬───────────┬───────┐

 │ │ │ │ │ │

│ data │ alias │ alias │ AMODE │ alias │

│header │ name │ name │ length │ AMODE │

│ │ length │ │ (2 bytes) │ │

│ │ (2 bytes) │ │ │ │

 └───────┴───────────┴───────┴───────────┴───────┘

Figure 110. Alias Data Record

The alias data header is mapped by the TFMT_TDALIAS section of the IEWTFMT
macro shown here.

ATTRIBUTES Data Type: An ATTRIBUTES data type indicates that the data is
an array of attributes. The attributes data header is mapped by the
TFMT_TDATTRIBS section of the IEWTFMT macro. The map is described in
Figure 113 on page 339.

The attributes are the program attributes which have been set by the binder as
options. Specifically, they are: AC, AMODE, PAGE, DC, EDIT, EP, EXEC,
FETCHOPT, OL, REUS, RMODE, SCTR, SSI, and TEST. The program attributes
have the same names and values as the binder options, as described in “Setting
Options With the Binder API” on page 137, except for the following:

� The EP value is an entry point offset.

� The EXEC attribute indicates if the program is executable. The values are YES
or NO.

Figure 111. Transportable Program Alias Data Header

TFMT_TDALIAS DSECT Maps the alias data header

TFMT_TDALIAS_EYE DS CL8 Data record identifier. Contains string
'IEWTLIAS'.

TFMT_TDALIAS_LVL DS FL1 Level number: 1

TFMT_TDALIAS_RS1 DS CL3 Reserved

TFMT_TDALIAS_LEN DS FL4 Length of the record including the
varying data

TFMT_TDALIAS_EPOFF DS FL4 Alias entry point offset. The offset is
relative to the beginning of the
program object which contains this
alias.

TFMT_TDALIAS_DATOFF DS FL2 Offset to the alias data relative to the
beginning of the alias data record

TFMT_TDALIAS_RS2 DS FL2 Reserved

Note: The varying alias data is stored immediately after the TFMT_TDALIAS data header.
The alias data linear format is:

Alias name length + Alias name + Alias AMODE length + Alias AMODE

 (2 bytes) (varying) (2 bytes) (varying)

 Appendix F. Using the Transport Utility 337

 Transport Utility

� The PAGE attribute indicates if page alignment is performed for this program.
The values are YES or NO.

 ┌───────┬──────────┐

 │ │ │

 │ data │ │

│header │ data │

 │ │ │

 └───────┴──────────┘

 │

 │

 6

 ┌───────────────────┐

 │ 6

┌─────┬─────┬──────┬───┴────┬─────┬───────┬─────┬─────┬─────┐

│ │ │ │ │ │ │ │ │ │

│attr.│attr.│attr. │ offset │attr.│ │attr.│attr.│ │

│count│name │length│to attr.│name │ . . . │value│value│ ... │

│ │ 1 │ 1 │ value1 │ 2 │ │ 1 │ 2 │ │

│ │ │ │ │ │ │ │ │ │

└─────┴─────┴──────┴────────┴─────┴───────┴─────┴─────┴─────┘

Figure 112. Attributes Data Record

338 DFSMS/MVS V1R4 Program Management

 Transport Utility

ITEM Data Type: An ITEM data type indicates that the data is a data item identi-
fied by a class name. For the item data type, the class name is stored after the
data header. The item data itself (that is, the class of data for all sections of a
program object) follows the class name.

Figure 114 on page 340 shows the structure of the item data record. The data
header is mapped by the TFMT_TDITEM section in the IEWTFMT macro and is
shown in Figure 115 on page 340.

The data item that follows the class field is mapped by one of the mapping macros
described in Appendix J, “Binder API Buffer Formats” on page 393. The appli-
cable map is determined by the class name. For example, if the class name is
“B_RLD,” the corresponding map is structure IEWBRLD described in Figure 170 on
page 401.

The meaning of some fields in the header structures described in Appendix J,
“Binder API Buffer Formats” on page 393 is changed to fit the context of a record

Figure 113. Transportable Program Attributes Data Header

TFMT_TDATTRIBS DSECT Maps the attributes data header

TFMT_TDATTRIBS_EYE DS CL8 Data record identifier. Contains string
'IEWTATTR'.

TFMT_TDATTRIBS_LVL DS FL1 Level number: 1

TFMT_TDATTRIBS_RS1 DS CL3 Reserved

TFMT_TDATTRIBS_LEN DS FL4 Attribute data record length including
the varying data

TFMT_TDATTRIBS_DLEN DS FL4 Length of the varying attributes data

TFMT_TDATTRIBS_OFF DS FL2 Offset to the attributes varying data.
The offset is relative to the beginning
of TFMT_TDATTRIBS.

TFMT_TDATTIBS_RS2 DS FL2 Reserved

Note:

The attributes data is stored immediately after the attributes data header. The varying attri-
butes data has this format:

ATTRIBUTES_COUNT(how many in array) (4 bytes)

 ATTRIBUTES_ARRAY

 ATTRIBUTE_NAME (8 bytes)

 ATTRIBUTE_LENGTH (2 bytes)

 ATTRIBUTE_VALUE_OFFSET (2 bytes)

The offset is relative to the beginning of this

 attributes array.

The attribute value has a length of ATTRIBUTE_LENGTH.

ACTUAL VARYING VALUES (saved contiguously to previous structure)

The linear format of this data is:

ATTRIBUTES_COUNT (N) +

ATTRIBUTE_NAME(1) + ATTRIBUTE_LENGTH(1) + OFFSET(1) +

ATTRIBUTE_NAME(2) + ATTRIBUTE_LENGTH(2) + OFFSET(2) + ...

ATTRIBUTE_NAME(N) + ATTRIBUTE_LENGTH(N) + OFFSET(N) +

ACTUAL ATTRIBUTE VALUE(1) + ACTUAL ATTRIBUTE VALUE(2) + ...

ACTUAL ATTRIBUTE VALUE(N).

 Appendix F. Using the Transport Utility 339

 Transport Utility

rather than an in-storage buffer. These changes apply to the header fields listed
below. Replace “xxx” with a data class identifier (ESD, RLD, IDB, ...).

xxxH_BUFFER_LENG Actual length of the item data including header

xxxH_ENTRY_COUNT Actual number of entries in the record

xxxH_NAMEPTR_ADJ Negative adjustment factor to add to name pointers.
The pointers then become offsets from the first byte of
the buffer header (for example, IEWBESD, or
IEWBRLD). In the context of the item record, the offsets
are relative to the beginning of the item data. See
Figure 114.

 offset

 ┌──────┐

 │ 6

 ┌─┴─────┬───────────┬───────┬───────────┬──────┐

 │ │ │ │ │ │

│ data │ class │ class │ data │ data │

│header │ length │ name │ item │ item │

│ │ (2 bytes) │ │ length │ │

│ │ │ │ (2 bytes) │ │

 └───────┴───────────┴───────┴───────────┴──────┘

Figure 114. Item Data Record

End of General-use programming interface

Figure 115. Transportable Program Item Data Header

TFMT_TDITEM DSECT Maps item data header

TFMT_TDITEM_EYE DS CL8 Data record identifier. Contains string
'IEWTITEM'

TFMT_TDITEM_LVL DS FL1 Level number: 1

TFMT_TDITEM_BUFF_LVL DS FL1 Version of the data buffer which
follows this header

TFMT_TDITEM_RS1 DS CL2 Reserved

TFMT_TDITEM_LEN DS FL4 Data record length including the
varying data

TFMT_TDITEM_CSR DS FL4 Cursor number. Indicates the relation-
ship of data in this data record relative
to the previous item data record

TFMT_TDITEM_CNT DS FL4 Indicates how many bytes/records of
binder data are saved after this
header.

TFMT_TDITEM_OFF DS FL2 Offset to the item data relative to the
beginning of TFMT_TDITEM

TFMT_TDITEM_RS2 DS CL2 Reserved

Note: The varying item data is stored immediately after the item data header. The varying
item data has the format:

Class name length + Class name + Item data length + Item data

 (2 bytes) (varying) (2 bytes) (varying)

340 DFSMS/MVS V1R4 Program Management

 Object Conventions and Formats

Appendix G. Object Module Input Conventions and Record
Formats

This appendix contains General-use Programming Interface and Associated Guid-
ance Information.

This appendix contains binder input conventions and record formats for object
modules.

See “C/370 Extended Object Module” on page 347 for the format used for
LONGNAME support for the C compiler.

Appendix I, “Generalized Object File Format(GOFF) Input Conventions and Record
Formats” on page 361 discusses support for the Generalized Object File Format.

 Input Conventions
All object modules used as input to the binder must follow a number of input con-
ventions. The binder treats violation of the following conventions as errors:

� All text records of a control section must follow the external symbol dictionary
(ESD) record containing the control section (SD) or private code (PC) entry that
describes the control section.

� The end of every object module must be marked by an END record.

� Each object module can contain only one zero-length control section (a control
section whose length field in its SD or PC entry in the ESD contains zeros).
The length must be specified on the END record of any module that contains a
zero-length control section.

� After processing the first text record of a zero-length control section, the binder
will not accept a text record of a different control section within the same object
module.

� Any relocation dictionary (RLD) item must be read after the ESD items to which
it refers; if it refers to a label in a different control section, it must be read after
the ESD item for that control section.

� The language translators must gather RLD items in groups of identical position
pointers. No two RLD items having the same P pointer can be separated by
an RLD item having a different P pointer.

� Each record of text2 and each LD or LR entry in the ESD record must refer to
an SD or PC entry in the ESD.

� The position pointer of every RLD item must point to an SD or PC entry in the
ESD.

� No LD or LR may have the same name as an SD or CM.

� All SYM records must be placed at the beginning of an object module. The
ESD for an object module containing test translator statements must follow the
SYM records and precede TXT records.

2 A common (CM) control section cannot contain text or external references.

 Copyright IBM Corp. 1991, 1997 341

 Object Conventions and Formats

� The binder accepts TXT records that are out of order within a control section,
even though binder processing may be affected. TXT records are accepted
even though they may overwrite previous text in the same control section. The
binder does not eliminate any RLD items that correspond to overwritten text.

� During a single execution of the binder, if two or more control sections having
the same name are read in, only the first control section is accepted; the sub-
sequent control sections are deleted.

� The binder interprets common (CM) entries in the ESD (blank or with the same
name) as references to a single control section whose length is the maximum
length specified in the CM items of that name (or blank). No text may be con-
tained in a common control section.

� Within an input module, the binder does not accept an SD or PC entry after the
first RLD item is read.

To avoid unnecessary scanning and input/output operations, input modules should
conform with the following conventions. Although violations of these rules are not
treated as errors, avoiding them will improve the efficiency of binder processing.

� Within an object module, no LD or SD may have the same name as an ER.

� Within an object module, no two ERs may have the same name.

� Within an object module, TXT records may be in the order of the addresses
assigned by the language translator.

 Record Formats
The following figures show the record formats required for object modules proc-
essed by the binder.

 SYM Record

SYM Input Record

┌─┬───┬──────────┬─────┬──────────┬──┬─────────────────────────┐

│1│2-4│ 5-1ð │11,12│ 13-16 │ 17-72 │ 73-8ð │

└┬┴─┬─┴────┬─────┴──┬──┴────┬─────┴────┬───┴──────┬──────────────────┘

 │ │ │ │ │ │ │

 │ │ │ │ │ └──── SYM data └── Not used

 │ │ │ │ │

 │ │ │ │ │

 │ │ │ │ └──── Blank

 │ │ │ │

 │ │ │ └── Number of bytes of SYM data

 │ │ │

 │ │ │

 │ │ └── Blank

 │ │

 │ └── SYM

 │

 └── X'ð2'

Figure 116. SYM Input Record

342 DFSMS/MVS V1R4 Program Management

 Object Conventions and Formats

 ESD Record

ESD Input Record

┌─┬───┬──────────┬─────┬─────┬─────┬───┬─────────────────────────┐

│1│2-4│ 5-1ð │11,12│13,14│15,16│ 17-72 │ 73-8ð │

└┬┴─┬─┴────┬─────┴──┬──┴──┬──┴──┬──┴───────────┬─────────────────────────────────────┴──────┬──────────────────┘

│ │ │ │ │ │ │ │

│ │ │ │ │ │ │ └── Not used

│ │ │ │ │ │ │

│ │ │ │ │ │ └── ESD Data - see below (up to 3 data items per record)

│ │ │ │ │ │

│ │ │ │ │ ├── Blank if all ESD items are LD

│ │ │ │ │ └── ESD IDENTIFIER of first ESD item (other than LD)

 │ │ │ │ │

 │ │ │ │ └── Blank

 │ │ │ │

 │ │ │ └── Number of bytes of ESD data

 │ │ │

 │ │ └── Blank

 │ │

 │ └── ESD

 │

 └── X'ð2'

ESD Data Item

┌───────────┬─┬───────┬──┬───────┐

│ 1-8 │9│ 1ð-12 │13│ 14-16 │

└─────┬─────┴┬┴───┬───┴─┬┴───┬───┘

 │ │ │ │ │

 │ │ │ │ ├── Zero if length is on END record (types SD, PC)

 │ │ │ │ ├── Length of control section (types SD, PC, CM)

 │ │ │ │ ├── Identifier of SD entry containing name (type LD)

 │ │ │ │ ├── Blank (types ER, WX)

 │ │ │ │ └── Length of pseudoregister (type PR)

 │ │ │ │

 │ │ │ └── Alignment factor (PR)

 │ │ │ ð7 - doubleword alignment

 │ │ │ ð3 - word alignment

 │ │ │ ð1 - halfword alignment

 │ │ │ ðð - byte alignment

 │ │ │ AMODE/RMODE/RSECT data (SD, PC)

 │ │ │ xxxx not used

 │ │ │ R... RSECT information

 │ │ │ ð = not read-only

 │ │ │ 1 = read-only

 │ │ │R.. RMODE data

 │ │ │ ð = 24

 │ │ │ 1 = ANY

 │ │ │AA AMODE data

 │ │ │ ðð, ð1 = 24

 │ │ │ 1ð = 31

 │ │ │ 11 = ANY

 │ │ │ Blank (LD, ER, CM, Null, WX)

 │ │ │

 │ │ └── 24 bit address (SD, PC, LD)

 │ │

 │ └── Type-Hex (ðð=SD, ð1=LD, ð2=ER, ð4=PC, ð5=CM, ð6=PR, ðA=WX)

 │

├── Name-when type is: SD, LD, ER, CM, PR, WX

└── Blank-when type is: PC or blank CM

Figure 117. ESD Input Record

 Appendix G. Object Module Input Conventions and Record Formats 343

 Object Conventions and Formats

 Text Record

Text Input Record

┌─┬─────┬─┬─────┬─────┬──────┬─────┬─────┬───┬─────────────────────────┐

│1│ 2-4 │5│ 6-8 │ 9,1ð│ 11,12│13,14│15,16│ 17-72 │ 73-8ð │

└┬┴──┬──┴┬┴──┬──┴──┬──┴───┬──┴──┬──┴──┬──┴────────┬──────────────────────────────────┴────────┬────────────────┘

│ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ └── Not used

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ └── Text data (machine language code)

│ │ │ │ │ │ │ │

│ │ │ │ │ │ │ └── ESD Identifier of SD or PC for control section of this text

│ │ │ │ │ │ │

│ │ │ │ │ │ └── Blank

│ │ │ │ │ │

│ │ │ │ │ └── Number of bytes of text data

│ │ │ │ │

│ │ │ │ └── Blank

│ │ │ │

│ │ │ └── 24 bit address of first byte of text data

│ │ │

│ │ └── Blank

 │ │

 │ └── TXT

 │

 └── X'ð2'

Figure 118. Text Input Record

344 DFSMS/MVS V1R4 Program Management

 Object Conventions and Formats

 RLD Record

RLD Input Record

┌─┬─────┬──────────┬───────┬───────┬──┬───────────────────────────┐

│1│ 2-4 │ 5-1ð │ 11-12 │ 13-16 │ 17-72 │ 73-8ð │

└┬┴──┬──┴────┬─────┴───┬───┴───┬───┴─────┬──┴─────────────┬─────────────┘

 │ │ │ │ │ │ │

 │ │ │ │ │ │ └── Not used

 │ │ │ │ │ │

 │ │ │ │ │ └── RLD data-see below

 │ │ │ │ │

 │ │ │ │ └── Blank

 │ │ │ │

 │ │ │ └── Number of bytes of RLD data

 │ │ │

 │ │ └── Blank

 │ │

 │ └── RLD

 │

 └── 12-9-2 (ðððð ðð1ð)

RLD data item

┌───┬───┬─┬───────┐

│1,2│3,4│5│ 6-8 │

└─┬─┴─┬─┴┬┴───┬───┘

 │ │ │ │

│ │ │ └── Assigned address of address constant

 │ │ │

│ │ └── Flag field -- (TTTTLLSTn)

│ │ TTTT=type S=Direction of relocation

 │ │ ðððð=nonbranch ð=positive (+)

 │ │ ððð1=branch 1=negative (-)

 │ │ ðð1ð=Q-type

│ │ ðð11=pseudoregister cumulative length Tn=type of next RLD item

│ │ LL=length of address constant ð=next RLD item has a different R or P

│ │ ð1=2 bytes pointer; they are present in the next item

│ │ 1ð=3 bytes 1=next RLD item has the same R and P pointers,

│ │ 11=4 bytes hence they are omitted

 │ │

│ └── Position pointer (P)-ESD Id of SD for control section that contains the address constant

 │

└─── Relocation pointer (R)-ESD Id of CESD entry for the symbol being referred to

(zero(ðð) if type=PR cumulative length)

Figure 119. RLD Input Record

 Appendix G. Object Module Input Conventions and Record Formats 345

 Object Conventions and Formats

 END Record

END Input Record - Type 1

┌─┬───┬─┬─────┬────────┬─────┬───────────────────┬───────┬───┐

│1│2-4│5│ 6-8 │ 9-14 │15,16│ 17-28 │ 29-32 │ 33-8ð │

└┬┴─┬─┴┬┴──┬──┴──┬─────┴──┬──┴──┬────────────────┴───┬───┴──┬──┘

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ └── IDR data - See below

│ │ │ │ │ │ │ │

│ │ │ │ │ │ │ └── Control section length for control section whose length

│ │ │ │ │ │ │ was not specified in SD ESD item. Byte 29 is binary zero

│ │ │ │ │ │ │ if a length is present in bytes 3ð-32.

│ │ │ │ │ │ │

│ │ │ │ │ │ └── Blank

│ │ │ │ │ │

│ │ │ │ │ └── ESDID of SD item for the control section that contains

│ │ │ │ │ the entry point address specified in bytes 6-8.

│ │ │ │ │

│ │ │ │ └── Blank

│ │ │ │

│ │ │ └── 24-bit address of entry point (optional)

│ │ │

│ │ └── Blank

 │ │

 │ └── END

 │

 └── X'ð2'

Figure 120. END Input Record—Type 1

END Input Record - Type 2

┌─┬───┬────────────────┬─────────────────┬───────┬───────┬───┐

│1│2-4│ 5-16 │ 17-24 │ 25-28 │ 29-32 │ 33-8ð │

└┬┴─┬─┴──┬─────────────┴──┬──────────────┴──┬────┴───┬───┴──┬──┘

 │ │ │ │ │ │ │

 │ │ │ │ │ │ └── IDR data - See below

 │ │ │ │ │ │

 │ │ │ │ │ └── Control section length for control section

 │ │ │ │ │ whose length was not specified in SD ESD item.

 │ │ │ │ │

 │ │ │ │ └── Blank

 │ │ │ │

 │ │ │ └── Symbolic entry point name (optional)

 │ │ │

 │ │ │

 │ │ └── Blank

 │ │

 │ │

 │ └── END

 │

 └── X'ð2'

Figure 121. END Input Record—Type 2

346 DFSMS/MVS V1R4 Program Management

 Object Conventions and Formats

IDR data in an END record

┌─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐

│ 33 │ 34-43 │ 44-45 │ 46-47 │ 48-49 │ 5ð-52 │ 53-71 │ 72-8ð │

└─┬───────────┴─┬───────────┴─┬───────────┴─┬───────────┴─┬───────────┴─┬───────────┴─┬───────────┴─────────────┘

│ │ │ │ │ │ │

│ │ │ │ │ │ └── When present, same format

│ │ │ │ │ │ as bytes 34-52, but data

│ │ │ │ │ │ applies to a processor which

│ │ │ │ │ │ produced the source code for

│ │ │ │ │ │ the processor described in

│ │ │ │ │ │ bytes 34-52.

│ │ │ │ │ │

│ │ │ │ │ └── Day of year (date of compilation or assembly)

│ │ │ │ │

│ │ │ │ └── Last two digits of year (date of compilation or assembly)\

│ │ │ │

│ │ │ └── Modification level of processor (ð1 to 99)

│ │ │

│ │ └── Version level of processor (ð1 to 99)

 │ │

│ └── Translator identification: Order number or equivalent,

│ left justified and padded to the right with blanks.

 │

└── Flag field:

Blank: No IDR information in this record

(Provides compatibility with existing format)

X'F1': One IDR item follows

X'F2': Two IDR items follow

Note: * 65-99 represents 19XX years and 00-64 represents 20XX years.

Figure 122. IDR Data in an Object Module END Record

C/370 Extended Object Module
The C compiler creates a modified object module when LONGNAME support is
required. This special object module:

� contains a special header module consisting of 2 records.3 The first record is
an ESD record containing a single ESD item: a 0 length section definition (SD)
for the name @@DOPLNK. The second record is an END record with the
appropriate product and date information.

� has each long name on one or more XSD records, which are described in the
remainder of this appendix. This record uniformly replaces the ESD record
throughout except in the case of the CEESTART module. The CEESTART
module, when present, is generated with ESD records.

3 This module is generated for two reasons. The first reason is that, on CMS, the TXTLIB command functions ADD and GEN
require an object module for TXTLIB update to contain at least one ESD record with an exposed name. The C/370 Object Library
Utility uses these two functions for TXTLIB processing. The second reason is that it provides an easy way, in particular for the
CMOD EXEC, to determine whether or not an object module requires processing by the C/370 Pre-linkage Utility (the C Prelinker).
The Prelinker deletes this module from its output stream.

 Appendix G. Object Module Input Conventions and Record Formats 347

 Object Conventions and Formats

XSD Record Format

 XSD Record

 ┌─┬───┬────┬─────┬─────┬─────┬──────────────┬───────┐

│1│2─4│5─1ð│11,12│13,14│15,16│ 17─72 │ 73─8ð │

 └┬┴┬──┴─┬──┴─┬───┴─┬───┴─┬───┴─┬────────────┴┬──────┘

│ │ │ │ │ │ │ └─── not used

│ │ │ │ │ │ └─── XSD Data ─ see below

│ │ │ │ │ ├─── LD identifier if XSD is an LD

│ │ │ │ │ └─── XSD identifier (other than LD)

│ │ │ │ └─── Flag Bytes ─ see below

│ │ │ └─── Number of bytes of XSD Data

 │ │ └─── Blank

│ └─── XSD

 └─── ðxð2

 XSD Data

 ┌─────┬─────┬──┬─────┬──┬─────┬───────────────┐

 │17─2ð│21─24│25│26─28│29│3ð─32│ 33─n (n<73) │

 └─┬───┴─┬───┴┬─┴─┬───┴┬─┴─┬───┴─┬─────────────┘

│ │ │ │ │ │ └─── Name or substring of Name

 │ │ │ │ │ │

│ │ │ │ │ ├─── Zero ─ if length is on END record

│ │ │ │ │ ├─── Length of control section (for SD,PC,CM)

│ │ │ │ │ ├─── Identifier of SD entry containing Name

│ │ │ │ │ ├─── Blank if type is ER,WX

│ │ │ │ │ └─── Length of pseudo─register (PR)

│ │ │ │ └─── Blank ─ alignment factor for type PR

│ │ │ └─── 24 bit address

│ │ └─── Type ─ Hex (ð=SD,1=LD,2=ER,4=PC,5=CM,6=PR,A=WX)

│ └─── Offset of first byte of Name or substring of Name

└─── Total length of Name

 Flag Bytes

 ┌────────────┬────┬────┐

 │13,14.1─14.6│14.7│14.8│

 └─┬──────────┴──┬─┴─┬──┘

│ │ └─── 1 if Name was mapped (for example. #pragma map)

│ └─── 1 if Name is for a function

 │

└─── Reserved (set to ð)

 Notes
1. The record is structured like the ESD record. This is so that it is simple to map

a XSD record to an ESD record. Differences from the ESD record, and other
details, are described here.

348 DFSMS/MVS V1R4 Program Management

 Object Conventions and Formats

2. The length of a name can be stored in a four byte field. A name greater than
40 characters in length is spread over several records. These name records
may be mixed with the records for other names.4

3. For a name spread over several records, all of the information is repeated on
each record except for the 'Offset' and 'Substring of Name' field.

4. The LD identifiers5 and XSD identifiers can collide. That is, LD identifiers and
XSD identifiers are different identifier namespaces.

5. PC sections have a name length of 0.

6. the 'if Name was mapped' bit is set for:

� names that are mapped using #pragma map
� control section names specified using #pragma csect
� reserved run-time names6 generated by the compiler.

4 To simplify buffering when reconstructing a name from several records, the utilities expect all the records for a single name to be
kept together. Reordering of records within a single name is handled.

5 A LD does not have an identifier field on an ESD record. This field is introduced to tie together all the XSD. records for a given
name.

6 The current list is CEESTART, CEEMAIN, CEEFMAIN, CEESG003, IBMBEATA, @@XINIT@, @@INIT@@, @@FTOC,
@@CTOF, @@CBL2C and @@C2CBL.

 Appendix G. Object Module Input Conventions and Record Formats 349

 Object Conventions and Formats

350 DFSMS/MVS V1R4 Program Management

 Load Module Formats

| Appendix H. Linkage Editor Load Module Formats

| This appendix contains General-use Programming Interface and Associated Guid-
| ance Information.

| This section contains linkage editor record formats (see Figure 123 on page 353
| through Figure 130 on page 358).

| See also “C/370 Extended Object Module” on page 347 for the format used for
| LONGNAME support for the C compiler and Appendix I, “Generalized Object File
| Format(GOFF) Input Conventions and Record Formats” on page 361 discusses
| support for the Generalized Object File Format.

| Input Conventions
| Load modules to be processed in a single execution of the linkage editor must
| conform with a number of input conventions. Violations of the following are treated
| as errors by the linkage editor:

| � All text records of a control section must follow the ESD record containing the
| SD or PC entry that describes the control section.

| � The end of every input module must be marked by an end indication (END
| record in an object module; EOM flag in a load module).

| � Each input module may contain only one no-length control section (a control
| section whose length field in its SD or PD entry in the ESD contains zeros).
| The length must be specified on the END record of any module that contains a
| no-length control section.

| � After processing the first text record of a no-length control section, the linkage
| editor will not accept a text record of a different control section within the same
| input module.

| � Any RLD item must be read after the ESD items to which it refers; if it refers to
| a label within a different control section, it must be read after the ESD item for
| that control section.

| � The language translators must gather RLD items in groups of identical position
| pointers. No two RLD items having the same P pointer can be separated by
| an RLD item having a different P pointer.

| � Each record of text7 and each LD or LR entry in the ESD record must refer to
| an SD or PC entry in the ESD.

| � The position pointer of every RLD item must point to an SD or PC entry in the
| ESD.

| � No LD or LR may have the same name as an SD or CM.

| � All SYM records must be placed at the beginning of an input module. The ESD
| for an input module containing test translator statements must follow the SYM
| records and precede TXT records.

| 7 A common (CM) control section cannot contain text or external references.

 Copyright IBM Corp. 1991, 1997 351

 Load Module Formats

| � The linkage editor accepts TXT records that are out of order within a control
| section, even though linkage editor processing may be affected. TXT records
| are accepted even though they may overwrite previous text in the same control
| section. The linkage editor does not eliminate any RLD items that correspond
| to overwritten text.

| � During a single execution of the linkage editor, if two or more control sections
| having the same name are read in, only the first control section is accepted;
| the subsequent control sections are deleted.

| � The linkage editor interprets common (CM) entries in the ESD (blank or with
| the same name) as references to a single control section whose length is the
| maximum length specified in the CM items of that name (or blank). No text
| may be contained in a common control section.

| � Within an input module, the linkage editor does not accept an SD or PC entry
| after the first RLD item is read.

| To avoid unnecessary scanning and input/output operations, input modules should
| conform with the following conventions. Although violations of these rules are not
| treated as errors, avoiding them will improve the efficiency of linkage editor proc-
| essing.

| � Within an input module, no LD or SD may have the same name as an ER.

| � Within an input module, no two ERs may have the same name.

| � Within an input module, TXT records may be in the order of the addresses
| assigned by the language translator. (If TXT records are not in address
| sequence, each reorigin operation may require additional linkage editor proc-
| essing time.)

| � SYSUT1 record size should be at least as large as SYSLMOD.

| Record Formats
| Figure 123 on page 353 through Figure 130 on page 358 are the load module
| record formats for the linkage editor.

352 DFSMS/MVS V1R4 Program Management

 Load Module Formats

| ┌────────────┬────────────┬────────────┬────────────┬────────────┬────────────┬────────────┬─────────────┐

| │ 33 │ 34-43 │ 44,45 │ 46,47 │ 48,49 │ 5ð-52 │ 53-71 │ 72-8ð │

| └─────┬──────┴─────┬──────┴─────┬──────┴─────┬──────┴──────┬─────┴─────┬──────┴─────┬──────┴─────────────┘

| │ │ │ │ │ │ │

| │ │ │ │ │ │ └── When present, same format as columns

| │ │ │ │ │ │ 34-52, but data applies to a proces-

| │ │ │ │ │ │ sor which produced the source code

| │ │ │ │ │ │ for the processor described in columns

| │ │ │ │ │ │ 34-52 (PL/S compiler)

| │ │ │ │ │ │

| │ │ │ │ │ └── Day of year (date of compilation or assembly)

| │ │ │ │ │

| │ │ │ │ └── Last two digits or year (date of compilation or assembly)

| │ │ │ │

| │ │ │ └── Modification level of processor (ð1 to 99)

| │ │ │

| │ │ └── Version level of processor (ð1 to 99)

| │ │

| │ └── Translator identification-PID order number or equivalent, left justified and padded to the right

| │ with blanks.

| │

| └── Flag field:

| Blank = no IDR information in this record (provides compatibility with existing format)

| EBCDIC 1 = one IDR item follows

| EBCDIC 2 = two IDR items follow

| Figure 123. IDR Data in an Object Module End Record

| SYM Record - (Load Module)

| ┌───┬───┬─────┬───\ \─────────────────────────────────────┐

| │ ð │ 1 │ 2,3 │ 4-243 │

| └─┬─┴─┬─┴──┬──┴───────────────────────────────┬─────────────────────────────────\ \─────────────────────────────────────┘

| │ │ │ │

| │ │ │ └── SYM data and ESD data (ESD type SD, CM, and PC items)-(maximum of 24ð bytes)

| │ │ │

| │ │ └── Count-in bytes, of SYM and ESD data (2 bytes)

| │ │

| │ └── Subtype-specifies information for TESTRAN-(1 byte)

| │ 1ððð ðððð - this SYM record contains ESD items (SD, PC or CM) from a load module that was not "under test".

| │ The TEST attribute was not specified when it was link edited.

| │ ðððð ðððð - this SYM record is not the above type.

| │

| └── Identification-specifies this is a SYM record -- ð1ðð ðððð (1 byte)

| Figure 124. SYM Record (Load Module)

 Appendix H. Linkage Editor Load Module Formats 353

 Load Module Formats

| CESD Record-(Load Module)

| ┌───┬───┬─────┬─────┬─────┬───\ \───┐

| │ ð │ 1 │ 2,3 │ 4,5 │ 6,7 │ 8-247 up to 24ð bytes of ESD data │

| └─┬─┴─┬─┴──┬──┴──┬──┴──┬──┴─────────────────────┬───────────────────────\ \───┘

| │ │ │ │ │ │

| │ │ │ │ │ └── ESD data - see below

| │ │ │ │ │

| │ │ │ │ └── Count - in bytes, of ESD data (2 bytes)

| │ │ │ │

| │ │ │ └── ESDID of first ESD item (2 bytes)

| │ │ │

| │ │ └── Spare - binary zeros (2 bytes)

| │ │

| │ └── Flag (1 byte)

| │ ðxxx xxxx - byte 12 of CESD data items contains segment numbers

| │ 1xxx xxxx - byte 12 of CESD data items contains AMODE/RMODE/RSECT data

| │

| └── Identification -- ðð1ð ðððð (1 byte)

| CESD Data (Load Module)

| ┌───────────────────┬─┬───────┬──┬────────┐

| │ 1-8 │9│ 1ð-12 │13│ 14-16 │

| └─────────┬─────────┴┬┴───┬───┴─┬┴───┬────┘

| │ │ │ │ │

| │ │ │ │ └── ID/length - length (3 bytes), when type is: SD, PC, CM, or PR

| │ │ │ │ ID (2 bytes), when type is LR

| │ │ │ │ zero (3 bytes), when type is WX, Null or ER (Hex 'ð6ð indicates never call)

| │ │ │ │

| │ │ │ └── Zero (ER, WX, Null)

| │ │ │ If flag byte (byte 1) indicates CESD data items contain segment numbers,

| │ │ │ segment number (SD, PC, CM, LR)

| │ │ │ If flag byte (byte 1) indicates CESD data items contain AMODE/RMODE/RSECT data—

| │ │ │ xxxx not used

| │ │ │ R... RSECT information

| │ │ │ ð = not read-only

| │ │ │ 1 = read-only

| │ │ │R.. RMODE data

| │ │ │ ð = 24

| │ │ │ 1 = ANY

| │ │ │AA AMODE data

| │ │ │ ðð, ð1 = 24

| │ │ │ 1ð = 31

| │ │ │ 11 = ANY

| │ │ │ (SD, PC)

| │ │ │ Alignment factor (PR)

| │ │ │ ð7 = doubleword

| │ │ │ ð3 = fullword

| │ │ │ ð1 = halfword

| │ │ │ ðð = byte

| │ │ │

| │ │ └── Address - linkage editor assigned address of this symbol. Zero when type is ER,

| │ │ WX or Null (3 bytes).

| │ │

| │ └── Type - Section Definition (SD) xxxx ðððð │

| │ Label Reference (LR) xxxx ðð11 │

| │ Private Code (PC) xxxx ð1ðð │

| │ Common (CM) xxxx ð1ð1 │

| │ Pseudoregister (PR) xxxx ð11ð │

| │ Null ðððð ð111 │

| │ External Reference (ER) xxxx ðð1ð │

| │ Weak External Reference (WX) xxxx 1ð1ð │

| │ (1 byte) │

| │ Private Code marked delete

| │ (ENTAB and SEGTAB control sections) xxx1 x1ðð

| │

| └── Symbol - The eight-character external name (zero when type is Null)

| Figure 125. CESD Record (Load Module)

354 DFSMS/MVS V1R4 Program Management

 Load Module Formats

| Scatter/Translation Record

| ┌─┬─┬───┬───\ \──┐

| │ð│1│2,3│ 4-1ð23 Up to and including 1ð2ð bytes │

| └┬┴┬┴─┬─┴─────────────────────────┬───────────────────────────────\ \───┘

| │ │ │ │

| │ │ │ └── Data - may contain translation table or scatter table; or both, if

| │ │ │ both will fit in 1ð2ð bytes.

| │ │ │

| │ │ └── Count - in bytes, of data field (2 bytes)

| │ │

| │ └── Zero - binary zeros (1 byte)

| │

| └── Identification - identifies this as a scatter/translation record-ððð1 ðððð (1 byte)

| Translation Table

| ┌────┬────┬────┬────┬─────┬──\ \───┬─────┬─────┬─────┬─────┬─────┬────┐

| │ │ T │ T │ T │ T │ │ │ T │ T │ T │ T │ T │

| │ │ 1 │ 2 │ 3 │ │ │ │ │ │ │ │ n │

| └─┬──┴─┬──┴────┴────┴─────┴──\ \───┴─────┴─────┴─────┴─────┴─────┴──┬─┘

| │ │ │

| │ │ └── Padding-if necessary, to force fullword

| │ │ boundary alignment of scatter table (2 bytes)

| │ │

| │ └── Translation Table Entry-pointer to the scatter table entry that contains the address of the control

| │ section containing this CESD entry. Number of translation table entries=number of CESD

| │ entries + 1 = n. Pointer will be zero if its corresponding CESD entry is not SD, PC,

| │ CM, or LR. (2 bytes)

| │

| └── Zero-binary zeros (2 bytes)

| Scatter Table

| ┌── Scatter Table Entry (4 bytes)

| │

| ┌────┴────┐

| │ │

| ┌─────────┬─────────┬─────────┬────\ \───┬─────────┬─────────┬─────────┐

| │ │ │ │ │ │ │ │ │ │ │ │ │ │

| └────┬────┴┬─┴──┬───┴──┴──────┴──┴─\ \───┴──┴──────┴──┴──────┴──┴──────┘

| │ │ │

| │ │ └── Assigned Address-of a control section (SD, PC, or CM) (3 bytes)

| │ │

| │ └── Flags (1 byte)

| │ xxxx ..x. not used

| │ R... RSECT information

| │ ð = not read-only

| │ 1 = read-only

| │R.. RMODE data

| │ ð = 24

| │ 1 = ANY

| │H Hierachy (OS/MVT)

| │ ð = processor storage

| │ 1 = 2361 storage

| │

| └── Zero-binary zeros (4 bytes)

| Translation Table and Scatter Table

| ┌────┬────┬────┬────┬───┬───┬─\ \─┬───┬────┬───┬────┬────┬────┬────┬───┬─\ \─┬────┬────┬────┬────┬────┐

| │ │ T │ T │ T │ T │ T │ │ T │ T │ P │ │ S │ S │ S │ S │ │ │ │ │ │ S │

| │ │ 1 │ 2 │ 3 │ │ │ │ │ n │ │ │ 1 │ 2 │ 3 │ │ │ │ │ │ │ n │

| └─┬──┴──┬─┴────┴────┴───┴───┴─\ \─┴───┴────┴─┬─┴──┬─┴─┬──┴────┴────┴───┴─\ \─┴────┴────┴────┴────┴────┘

| │ │ │ │ │

| │ └────── Translation data (2 bytes) │ │ └── Scatter Table Entry

| │ │ │

| └─────── Binary Zero (2 bytes) │ └── Binary Zeros (4 bytes)

| │

| └── Padding-if necessary to align scatter table to a fullword boundary

| (2 bytes)

| Figure 126. Scatter/Translation Record

 Appendix H. Linkage Editor Load Module Formats 355

 Load Module Formats

| Control Record-(Load Module)

| ┌─┬───┬─┬───┬───┬───────────┬─────────────────────────────────\ \───┐

| │ð│1,2│3│4,5│6,7│ 8-15 │ 16-255 Record Length 2ð to 256 bytes for level F │

| └┬┴─┬─┴┬┴─┬─┴─┬─┴─────┬─────┴─────────────────┬───────────────\ \───┘

| │ │ │ │ │ │ │

| │ │ │ │ │ │ └── Control Data--see below

| │ │ │ │ │ │

| │ │ │ │ │ └── Channel Command Word (CCW)-that could be used to read the text record that follows.

| │ │ │ │ │ The data address field contains the linkage editor

| │ │ │ │ │ assigned address of the first byte of text in the text

| │ │ │ │ │ record that follows. The count field contains the length

| │ │ │ │ │ of the succeeding text record. (8 bytes)

| │ │ │ │ │

| │ │ │ │ └── Count-binary zeros (2 bytes)

| │ │ │ │

| │ │ │ └── Count-in bytes, of the control data (CESD ID, length of control section) following the CCW

| │ │ │ field (2 bytes)

| │ │ │

| │ │ └── Count (1 byte) of RLD and/or CTL/RLD records following next text record

| │ │

| │ └── Spare-binary zeros (2 bytes)

| │

| └── Identification (1 byte)-specifies that this is:

| ' a control record-ðððð ððð1

| ' the control record that precedes the last text record of this overlay segment-ðððð ð1ð1 (EOS)

| ' the control record that precedes the last text record of the module-ðððð 11ð1 (EOM)

| Control Data

| ┌───┬───┬───┬───┬──\ \──┬───┬───┐

| │ C │ L │ C │ L │ │ C │ L │

| └─┬─┴─┬─┴───┴───┴──\ \──┴───┴───┘

| │ │

| │ └── Length of text record and/or length of control section-specifies the length

| │ of the control section (in bytes) to which the text in the following record belongs, or

| │ the number of bytes of a control section contained in the following text record (2 bytes)

| │

| └── CESD entry number-specifies the composite external symbol dictionary entry that contains

| the control section name of the control section of which this text is a part (2 bytes)

| Figure 127. Control Record (Load Module)

356 DFSMS/MVS V1R4 Program Management

 Load Module Formats

| Relocation Dictionary Record-(Load Module)

| ┌─┬───┬─┬───┬───┬───────────┬─────────────────────────────────\ \──┐

| │ð│1,2│3│4,5│6,7│ 8-15 │ 16-255 Record length can be between 24 and 256 │

| └┬┴─┬─┴┬┴─┬─┴─┬─┴─────┬─────┴─────────────────┬───────────────\ \──┘

| │ │ │ │ │ │ │

| │ │ │ │ │ │ └── RLD data--see below

| │ │ │ │ │ │

| │ │ │ │ │ └── Spare- binary zeros (8 bytes)

| │ │ │ │ │

| │ │ │ │ └── Count-in bytes, of the relocation dictionary information following the spare 8-byte

| │ │ │ │ field (2 bytes)

| │ │ │ │

| │ │ │ └── Count-binary zeros (2 bytes)

| │ │ │

| │ │ └── Count (1 byte) of RLD and/or CTL/RLD records following next text record

| │ │

| │ └── Spare-binary zeros (3 bytes)

| │

| └── Identification (1 byte)-specifies that this is:

| „ a relocation dictionary record-ðððð ðð1ð

| „ the last record of the segment-ðððð ð11ð

| „ the last record of the module -ðððð 111ð

| RLD Data

| ┌───┬───┬─┬─────┬─┬─────┬────────────\ \──────────────────────────┬─┬─────┬───┬───┬─┬─────┬───┬───┬─┬─────┐

| │ R │ P │F│ A │F│ A │ │F│ A │ R │ P │F│ A │ R │ P │F│ A │

| └─┬─┴─┬─┴─┴─────┴┬┴─────┴────────────\ \──────────────────────────┴─┴─────┴───┴───┴─┴──┬──┴───┴───┴─┴─────┘

| │ │ │ │

| │ │ │ └── Address-linkage editor

| │ │ │ assigned address of the address

| │ │ │ constant (3 bytes)

| │ │ └── Flag-(1 byte) When byte format is xxxxLLST,

| │ │ specifies miscellaneous information as follows:

| │ │ xxxx specifies the type of this RLD item (address constant).

| │ │ ðððð--nonbranch-type in assembler language, DC A (name)

| │ │ ððð1--branch-type in assembler language, DC V (name)

| │ │ ðð1ð--pseudoregister displacement value

| │ │ ðð11--pseudoregister cumulative displacement value

| │ │ 1ððð and 1ðð1--this address constant is not to be relocated because it refers to an unresolved symbol

| │ │ LL specifies the length of the address constant.

| │ │ ð1--two byte

| │ │ 1ð--three byte

| │ │ 11--four byte

| │ │ S specifies the direction of relocation.

| │ │ ð--positive

| │ │ 1--negative

| │ │ T specifies the type of the next RLD item.

| │ │ ð--the following RLD item has a different relocation and/or position pointer

| │ │ 1--the following RLD item has the same relocation and position pointers as this and therefore

| │ │ is omitted

| │ │

| │ └── Position pointer (P)-contains the entry number of the CESD entry (or translation table entry) that

| │ indicates which control section holds the address constant (2 bytes)

| │

| └── Relocation pointer (R)-contains the entry number of the CESD entry (or translation table entry) that indicates

| which symbol value is to be used in the computation of the address constant's value (2 bytes)

| Figure 128. Relocation Dictionary Record (Load Module)

 Appendix H. Linkage Editor Load Module Formats 357

 Load Module Formats

| Control and Relocation Dictionary Record-(Load Module)

| ┌─┬─────┬───┬───┬──────────────┬───┬───┬──┬─────┬──┬─────┬──────────\ \────────────┬──┬─────┬───┬───┐

| │ð│ 1-3 │4,5│6,7│ 8-15 │ │ │ │ │ │ │ │ │ │ │ │

| └┬┴──┬──┴─┬─┴─┬─┴───────┬──────┴─┬─┴─┬─┴┬─┴──┬──┴┬─┴──┬──┴──────────\ \────────────┴──┴─────┴─┬─┴─┬─┘

| │ │ │ │ │ │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │ │ │ │ └── Length of

| │ │ │ │ │ │ │ │ │ │ │ │ control section or

| │ │ │ │ │ │ │ │ │ │ │ │ text record (2 bytes)

| │ │ │ │ │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │ │ │ └── CESD entry number

| │ │ │ │ │ │ │ │ │ │ │ (2 bytes)

| │ │ │ │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │ │ └── Address

| │ │ │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │ └── Flag

| │ │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ └── Address (3 bytes)

| │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ └── Flag (1 byte)

| │ │ │ │ │ │ │

| │ │ │ │ │ │ └── Position pointer (2 bytes)

| │ │ │ │ │ │

| │ │ │ │ │ └── Relocation pointer (2 bytes)

| │ │ │ │ │

| │ │ │ │ └── Channel Command Word (8 bytes)

| │ │ │ │

| │ │ │ └── Count, in bytes, of RLD information (2bytes)

| │ │ │

| │ │ └── Count, in bytes, of control information following the last RLD address field.

| │ │ The control information contains the ID and length of control sections in the following text record.

| │ │ (2 bytes)

| │ │

| │ └── Spare (3 bytes)

| │

| └── Identification (1 byte) - specifies that this record is:

| ' a control and RLD record-ðððð ðð11-(it is followed by a text record)

| ' a control and RLD record that is followed by the last text record of a segment-ðððð ð111 (EOS)

| ' a control and RLD record that is followed by the last text record of a module-ðððð 1111 (EOM)

| Notes: For detailed descriptions of the data fields see Relocation Dictionary Record and Control Record.

| The record length varies from 2ð to 256 bytes.

| Figure 129. Control and Relocation Dictionary Record (Load Module)

| CSECT Identification Record

| ┌─┬─┬─┬────────────────────────\ \───┐

| │ð│1│2│ 3-255 record length 7 to 256 bytes │

| └┬┴┬┴┬┴────────────┬───────────\ \───┘

| │ │ │ │

| │ │ │ └── IDR data - see below

| │ │ │

| │ │ └── Sub-Type Indicator-specified type of IDR data contained on this record (bits 1-3 reserved)

| │ │ ---- ððð1 data supplied by HMASPZAP
| │ │ ---- ðð1ð Linkage Editor data

| │ │ ---- ð1ðð Translator-supplied data

| │ │ ---- 1ððð User (System)-supplied data (from IDENTIFY function)

| │ │ 1--- ---- Indicates the last IDR of this load module

| │ │

| │ └── Byte Count-of IDR data in this record, including this field (value range 6 to 255).

| │

| └── Identification-indicates that this is:

| 1ððð ðððð - a CSECT Identification record.

| Figure 130 (Part 1 of 3). Record Format of Load Module IDRs

358 DFSMS/MVS V1R4 Program Management

 Load Module Formats

| HMASPZAP Data

| ┌─┬───┬─────┬─────────────────┬────────────────────────────────────\ \──┐

| │ð│1,2│ 3-5 │ 6-13 │ 14-247 │

| └┬┴─┬─┴──┬──┴────────┬────────┴──────────────────┬─────────────────\ \──┘

| │ │ │ │ │

| │ │ │ │ └── Up to 18 repetitions of bytes 1 through 13

| │ │ │ │

| │ │ │ │

| │ │ │ └── Data specified during HMASPZAP processing \

| │ │ │

| │ │ └── Data of HMASPZAP processing (packed decimal) YYDDD

| │ │

| │ └── ESDID of CSECT processed by HMASPZAP

| │

| └── Flags and count

| Bit ð-reserved

| Bit 1-chain bit - a 1 indicates that the next record is also available for HMASPZAP data.

| Bits 2-7-number of HMASPZAP entries used on this record (value range ð to 19)

| \ May be a PTF number or up to eight bytes of variable user data specified on an HMASPZAP DRDATA control statement.

| Linkage Editor Data

| ┌───────────┬─────┬───────┐

| │ ð-9 │1ð,11│ 12-14 │

| └─────┬─────┴──┬──┴───┬───┘

| │ │ │

| │ │ └── Date of last linkage editor processing of this module (packed decimal) YYDDD

| │ │

| │ └── Version and Modification level of the linkage editor that produced this module (packed decimal) VVMM

| │

| └── Program Name of the linkage editor that produced this module

| Figure 130 (Part 2 of 3). Record Format of Load Module IDRs

 Appendix H. Linkage Editor Load Module Formats 359

 Load Module Formats

| Translator Data

| ┌─────┬──────────────────────\ \───────────────────────────────────────┐

| │ ð,1 │ Variable n to n+14 │

| └──┬──┴─────────┬────────────\ \───────────────────┬───────────────────┘

| │ │ │

| │ │ └── Translator description (see below)

| 6 6

| ───────────────────5 ESDID(s) of CSECT(s) whose object code was produced by the translator described in this data item.

| This field is repeated as many times as necessary with the high order bit of the last ESDID in the

| list set to 1.

| Translator Description (This portion is an optional extension for PL/S)

| ┌───┬──────────┬───────────┬───────────┬────────────────────────────────┐

| │ ð │ 1-1ð │ 11-12 │ 13-15 │ 16-3ð │

| └─┬─┴────┬─────┴─────┬─────┴─────┬─────┴──────────────┬─────────────────┘

| │ │ │ │ │

| │ │ │ │ └── When present, same as bytes 1-15, but data applies to a

| │ │ │ │ translator whose output is source code (a PL/S compiler)

| │ │ │ │

| │ │ │ └── Date of compilation/assembly (packed decimal) YYDDD

| │ │ │

| │ │ └── Version and Modification level of translator (packed decimal) VVMM

| │ │

| │ └── Program name of translator, left justified and padded to the right with blanks

| │

| └── Indicator

| ðððð ðððð - only one translator was described on object END card for these CSECTs

| ðððð ððð1 - two translators were described on object END card (that is, PL/S Compiler and Assembler) and are

| included here.

| User Data (Linkage Editor IDENTIFY Function)

| ┌─────┬─────────┬─────┬──────────────\ \───────────────────────────────┐

| │ ð,1 │ 2-4 │ 5 │ variable 1 to 4ð bytes │

| └──┬──┴────┬────┴──┬──┴──────┬───────\ \───────────────────────────────┘

| │ │ │ │

| │ │ │ └── From 1 to 4ð bytes of variable user (or system) supplied data as specified on the

| │ │ │ Linkage Editor IDENTIFY control statement. Assumed to be printable EBCDIC characters.

| │ │ │

| │ │ └── Count - number of characters in the user data field

| │ │

| │ └── Date on which this data was supplied to the module via the linkage editor IDENTIFY control statement.

| │

| └── ESDID of the CSECT to which the user data applies.

| Figure 130 (Part 3 of 3). Record Format of Load Module IDRs

360 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Appendix I. Generalized Object File Format(GOFF) Input
Conventions and Record Formats

This appendix contains General-use Programming Interface and Associated Guid-
ance Information.

This appendix describes the conventions and formats for the Generalized Object
File Format (GOFF). Although a comprehensive architecture for the GOFF has
been developed, only those data elements being currently supported by the binder
are shown here.

Generalized Object File Format (GOFF)
The GOFF record types are essentially identical in concept (and usually, in content)
to OBJ (object module) records, but their formats will differ in several respects.
Migration from OBJ to GOFF formats is discussed in “Migration from Old Object
Formats” on page 383. In the remainder of this appendix, the term OBJ refers to
traditional object formats, including the extended object format.

The term “record” is used in two possibly conflicting senses throughout this
appendix. The first sense is that of a “logical” record, one of the GOFF record
types. The second sense is that of a “physical” record, which contains one of the
“segments” of a continued “logical” record. The correct sense should be clear from
the surrounding context.

Guidelines and Restrictions
The following guidelines and restrictions are followed by GOFF records:

� GOFF records are fixed or variable length records with a minimum length of 80
bytes. Continuation rules are defined for all continuable records, but it is
recommended that variable length records be long enough not to require con-
tinuation.

GOFF records can be implemented using fixed-length 80-byte records if
desired; the last segment of a continued record can then contain unused bytes.
However variable format records are more efficient because they do not require
padding.

� A record's length is not a part of the record itself. This architecture assumes
that the operating environment in which the records are produced will supply
additional information, such as record length (LRECL) and record format (F or
V). This means that a program reading GOFF files need not know the internal
structure of each record in order to scan for a particular record type.

� Each distinct GOFF record type starts a new (logical) record. That is, a GOFF
file is not a stream; some (physical) records can have unused space. Starting
each new record in a fixed position (rather than at the “end of data” of the pre-
ceding record) simplifies buffering and scanning.

� GOFF records contain no sequence information. The sequence of the records
in a GOFF file cannot be altered. Continuation records must appear in the
correct sequence, immediately following the record they continue.

 Copyright IBM Corp. 1991, 1997 361

 GOFF Formats

� Each GOFF object file must begin with a header record, and end with an end
record. (Multiple object files can be produced in a single invocation of a trans-
lator, but the object stream must be separable into distinct object files.) The
“Record Count” field on the END record should contain a count of the logical
records in each object file including HDR and END.

� If a GOFF record is continued, no intervening records can appear among the
continuation segments.

� Some of the OBJ conventions for ordering and contents of the input records
apply. For example:

– ESD items must be numbered starting at 1 in a monotonically increasing
sequence, with no “gaps” or omitted values.

– An ESD record must precede any other record containing a reference to
the ESDID defined by that item.

� Multiple RLD data items can appear on a single RLD record, and RLD items
can be split across continuation records.

� ESD records will contain only a single ESD item.

� The character set to be used for external names is not specified in this GOFF
format. Other products, standards, or conventions can impose restrictions, of
course. The program management binder requires that the characters in
external symbols lie in the range from X'41' to X'FE' inclusive, plus the
Shift-Out (X'0E') and Shift-In (X'0F') characters.

The character set used in each GOFF file can be specified in the Module
Header record.

� Certain data elements are included in the GOFF architecture but are not sup-
ported by the binder. They do not appear here but will be added when that
support becomes available. For upward compatibility, these fields (shown as
reserved) should be set to binary zero.

Note: Basically, the program management binder supports any Single-Byte Char-
acter Set (SBCS), plus SBCS-encoded Double-Byte Character Sets (DBCS). The
main reason for including a character set identifier in the GOFF header record is to
prepare for support of Multiple-Byte Character Sets (MBCS) such as Unicode.

 Incompatibilities
The following features of GOFF records are incompatible with OBJ records.

� OBJ SYM records have no direct counterpart in GOFF records. Other more
flexible vehicles (particularly, ADATA records) will be used instead.

� Some non-supported uses of OBJ records have been found by users (for
example, hiding data in otherwise “blank” or “unused” fields). This is not sup-
ported for GOFF records, because they are intended to satisfy these needs.

Limitations on GOFF Records
The following limitations are placed on GOFF records.

� Values in length and offset fields can not exceed 999999999 (nine decimal
digits), due to the field-length restrictions in the AMBLIST program.

� ESDIDs cannot exceed 999999 (six digits) in PM2 because of limitations on
field widths in the output of the AMBLIST program.

362 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Generalized Object File Format Records
The basic GOFF record types are shown below. The names used here are similar
to OBJ record names, and have similar functions. The one new type, LEN, has a
name with similar mnemonic significance. These “names” do not appear anywhere
on the records, however (unlike OBJ records).

HDR Header Record: must appear first.

ESD External Symbol Definition

TXT Machine language instructions and data (“text”); Identification Data
Record (“IDR”) data; Associated Data (“ADATA”); other identification data
(more than current 19-byte IDR items); any other data items to become
part of the module. (Note that “text” is used here as a very general term;
see the definition in the glossary).

RLD Relocation Directory (adcon information)

LEN Supply length values for deferred-length sections

Note: A LEN record is essentially a special form of ESD record, in
which only a single piece of data, a length, is provided for a previously
defined external name.

END End of module, with optional entry-point identification. The END record
must be the last record in the object file.

 Conventions
Several sets of conventions are to be followed in using and describing GOFF
records.

In general, each record has at most one varying-length field.

Conventions for Record Descriptions
The fields in the records are described using four columns:

� A short phrase or name describing the field

� The offset of the field from the start of the record, or from the start of the record
component. Numbering is zero-based, and bits within a byte follow the standard
System/390 convention where the high-order (leftmost) bit in a byte (with the
greatest numeric weight) is bit zero. The notation is one of these forms:

n Byte number n
n-m Bytes numbered n through m
n-\ Bytes starting at n, through the end of the field or record
n.p Byte number n, bit number p
n.p-q Byte number n, bits numbered p through q

� The length of the field is described as follows:

Byte(n) A contiguous string of n bytes, with no particular numeric value
assigned, nor any significance for particular bits within the bytes.

Binary(n) A contiguous string of n bytes, to be treated as a signed two's-
complement binary integer. (If it is to be interpreted as an unsigned
integer, the field description will explicitly state this.)

Bit(n) A contiguous string of n bits.

� The contents of the field.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 363

 GOFF Formats

Conventions for Class Names
Many of the GOFF records require specifying a class name. Some of these names
can be chosen freely (for example, for user-supplied information), and other names
must follow some rules. Class names reserved to IBM are called “Reserved
Names,” and class names that can be used freely are called “Non-Reserved
Names.” (Note that class names are not external symbols!)

� Reserved class names of the following form are for IBM use only:

Reserved Class Names

55──letter──underscore──identifier──5%

– The first character of a reserved class name is a letter (A-Z).

– The second character of an internal class name is an underscore character
(_).

– The remaining 1 to 14 characters of a reserved class name form a normal
alphanumeric identifier: a letter followed by either letters, digits or both.

A reserved class name can be at most 16 characters long.

� Class names are not case sensitive (that is, all characters are “folded” internally
to upper case).

� By convention, reserved class names starting with any characters not C'C_',
C'X_', C'Y_', or C'Z_' are fixed, and are reserved to the program management
binder. Class names using the prefixes X_, Y_, or Z_ are further reserved for
use by non-IBM translators.

The choice of the underscore as the “separator” character will help to avoid
accidental interference with the program management binder's internal data-
classification structures.

The following classes can be specified by language translators and other crea-
tors of GOFF records:

B_ESD External Symbol Dictionary Class

 B_TEXT Text Class

B_RLD Relocation Directory Class

B_SYM Internal Symbol Table Class

B_IDRL Language-Translator Identification Data Class

 B_PRV Pseudo-Register Class

OBJ inputs to the program management binder will be automatically mapped to
these classes.

The following classes are reserved for internal use by the program manage-
ment binder, and cannot be specified on GOFF records:

B_IDRB program management binder-created Identification Data Class

B_IDRU User-specified Identification Data Class

B_IDRZ SuperZAP-created Identification Data Class

B_MAP Internal Program Object Mapping-Data Class

� It is expected that conventions will be established for the use of other classes.
IBM translators should use class names of the form:

 C_xxxxxxxxx Translator-defined Classes

364 DFSMS/MVS V1R4 Program Management

 GOFF Formats

The following mnemonic class-naming conventions are recommended for those
classes required for support of translator and language facilities:

C_CODE24 Code intended to reside below the line

C_CODE31 Code intended to reside above the line

C_EXTDATA External Data Parts; the program

management binder will determine

properties from attributes

C_EXTDATA24 External Data Parts; RMODE(24) specified

C_EXTDATA31 External Data Parts; RMODE(31) specified

C_EXTNATTR Extended Attribute Information

C_ADATAnnnn Associated Data Classes

For Associated Data classes, the characters nnnn are determined from the four
hexadecimal digits of the Associated Data record type.

Conventions for naming other translator-defined text classes will need to be
done by architectural agreement among all translators and other programs
using the GOFF and program object formats.

See “Associated Data (ADATA) Record Types” on page 390 for ADATA
classes.

� Non-Reserved class names follow the normal formation rules for external
symbols.

Remember that class names of the form “letter-underscore-name” are reserved
by IBM for reserved classes.

 Record Prefix
All GOFF records have a 3-byte identifying prefix of the following form:

Figure 131 (Page 1 of 2). GOFF Record Type-Identification Prefix Byte

Field Offset Type Description

Prefix 0 Byte(1) X'03'. All other values are reserved.

Note: The value X'03' is chosen to distinguish GOFF records from
OBJ records (which begin with a byte containing X'02') and from
control statements, which begin with a byte whose hex value is not less
than X'40'.

Record Type 1.0-3 Bit(4) Type of record:

X'0' External Symbol Dictionary (ESD)

X'1' Text (TXT)

X'2' Relocation Directory (RLD)

X'3' Deferred Section Length (LEN)

X'4' Module End, with optional entry point specification (END)

X'5-E' Reserved.

X'F' Module Header (HDR)

 1.4-5 Bit(2) Reserved.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 365

 GOFF Formats

Figure 131 (Page 2 of 2). GOFF Record Type-Identification Prefix Byte

Field Offset Type Description

Continuation and
Continued Indica-
tors

1.6-7 Bit(2) These two bits indicate respectively that this record is

� a continuation of the preceding record, and/or
� continued on the succeeding record.

B'ðð' This record is the initial record of the designated type (it is not
a continuation record). It is not continued on the succeeding
record.

Note: For variable-format GOFF records, this should be the
only valid combination.

B'ð1' This record is the initial record of the designated type (it is not
a continuation record). It is continued on the succeeding
record.

B'1ð' This record is a continuation of the previous record of this
type, and it is not continued on the following record.

B'11' This record is a continuation of the previous record of this
type, and it is continued on the following record.

Version 2 Byte(1) X'00' This is the initial version number for the record of this type.
All other values are reserved.

These three bytes are usually referred to as the “PTV” bytes.

Module Header Record
A module header (“HDR”) record describes global properties of this GOFF file. It is
required, and must appear first.

Figure 132. Module Header Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'03F000' if not continued (this is the only form currently defined)

 3-47 Byte(45) Reserved.

External Symbol Definition Record
An external symbol definition (“ESD”) record describes a single symbol. An initial
record has the following form:

Figure 133 (Page 1 of 3). External Symbol Definition Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'030000' if not continued
X'030100' if continued

366 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Figure 133 (Page 2 of 3). External Symbol Definition Record

Field Offset Type Description

Symbol Type 3 Binary(1) Type of the external symbol:

X'00' SD, section definition. This will include current OBJ ESD
items of types SD and PC (private code, blank SD name).
The “Parent” or “Owning” ID must be zero.

Note: PC sections are defined by having a blank section
name, not by a special section type (see “Mapping Object
Module ESD PC Items to GOFF Format” on page 385).

Note: See the comments in the description of the COMMON
flag in Figure 138 on page 374.

X'01' ED, element definition.

The “Parent ID” must be nonzero, and is the SD ID of the
section of which this element is a component.

Note: The class to which this element belongs is specified
by the external name on this record.

If any RLD items refer to this class, an ED record must be
present, even if the class contains no text.

X'02' LD, label definition. The “Parent ID” must be nonzero, and is
the EDID of the element in which the LD item resides.

X'03' PR, part reference.

The “Parent ID” must be nonzero, and is the EDID of the
element in which this PR item resides.

Note: This supersedes current OBJ PR (pseudo-register
definition).

X'04' ER and WX, external reference. (WX is described by the
“Binding Strength” value in the Attributes field below.)

All other types are reserved.

ESDID 4-7 Binary(4) ESDID of this item. This value must be greater than zero. ESDIDs in a
GOFF file must be numbered sequentially starting at one, with no gaps.

Parent or Owning
ESDID

8-11 Binary(4) ESDID of the object that “defines” or “owns” this item, if any. (For
example, an LD item has its own ESDID, but the element to which it
belongs has the “owning” ESDID.) If there is no “owning” ESDID, this
field contains binary zero. See Figure 135 on page 368 for a
summary.

 12-15 Binary(4) Reserved.

Offset 16-19 Binary(4)| Offset associated with the ESD item named on this record.

Note: The only ESD types currently having offsets are LD items (and
ED items as currently produced by the Assembler).

 20-23 Binary(4) Reserved.

Length 24-27 Binary(4) Length of the item named on this record.

Note: Length values apply only to ED and PR items. For SD, LD, and
ER items, this field must be zero.

Note: To distinguish a true zero length from a deferred length, specify
−1 if the length specification is deferred. See “Deferred Element Length
Record” on page 381.

| | 28-31| Binary(4)| Reserved.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 367

 GOFF Formats

Figure 133 (Page 3 of 3). External Symbol Definition Record

Field Offset Type Description

| | 32-35| Binary(4)| Reserved.

 36-39 Byte(4) Reserved.

Name Space ID 40 Binary(1) Identification of the name space to which this name belongs.

0 Reserved to program management binder

1 Normal external names (these can be specified as PDS
member and alias names)

2 Pseudo-Register (PR) names

3-7 Reserved to language translators

All other values are reserved.

 41-43 Byte(3) Reserved.

 44-51 Byte(8) Reserved.

 52-59 Byte(8) Reserved. Must be binary zero.

Behavioral Attri-
butes

60-69 Byte(10) Behavioral attribute information for the ESD item named on this record.
The format of the behavioral attribute information is shown in
Figure 137 on page 369.

Name Length 70-71 Binary(2) Length of the name of this ESD item. This length field cannot be zero.

Name 72-* Byte(n) Name of this ESD item. All names (including blank names) must be at
least one character long. Trailing blanks should be removed.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

External Symbol Definition Continuation Record
The format of an external symbol definition continuation record is as follows:

Figure 134. External Symbol Definition Continuation Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'030200' if not continued
X'030300' if continued

Text 3-* Byte(n) The next n bytes of the name.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

External Symbol ID and Name Relationships
The following table summarizes the ESDIDs of items and their “Parent ESDIDs.”
Terms like “SD ESDID” can be abbreviated as “SDID,” and so forth.

Figure 135 (Page 1 of 2). Relationship of an Element's ESDIDs and Parent ESDIDs

If this ESD
Item is:

Then its
ESDID is:

And its Parent
ESDID is:

And, the External Name defines a:

SD SDID zero Section name

368 DFSMS/MVS V1R4 Program Management

 GOFF Formats

These “parentage” relationships can also be viewed pictorially:

 SDID

 ┌──────────┴──────────┐

 EDID ERID

 ┌──────────┴──────────┐

 PRID LDID

Note: ESDIDs must be defined before they appear in any referencing field.

Figure 135 (Page 2 of 2). Relationship of an Element's ESDIDs and Parent ESDIDs

If this ESD
Item is:

Then its
ESDID is:

And its Parent
ESDID is:

And, the External Name defines a:

ED EDID SDID Class name

LD LDID EDID Label name

PR PRID EDID Part name

ER ERID SDID External name

Elements Specifiable on ESD Records
Figure 136. Specifiable External Symbol Definition Record Items

Field SD ED LD PR ER

Symbol Type Y Y Y Y Y

ESDID Y Y Y Y Y

Parent ESDID Y Y Y Y

Offset (see note) A Y

Length Y Y

Extended Attributes ESDID Y Y

Extended Attribute Offset Y Y

Name Space ID (see note) Y Y Y Y

Behavioral Attributes (see note) Y Y Y Y Y

Symbol Name Length Y Y Y Y Y

Symbol Name Y Y Y Y Y

Note: “A” means “Currently, Assembler Only.”

Note: The Name Space assigned to a LD or PR item must match that of the ED to which it
belongs.

Note: See “ESD Item Behavioral Attribute Assignment” on page 374 for Behavioral Attri-
bute assignments.

External Symbol Definition Behavioral Attributes
The format of the behavioral attributes data field in an external symbol definition
record is as follows:

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 369

 GOFF Formats

Figure 137 (Page 1 of 4). External Symbol Definition Behavioral Attributes

Field Offset Type Description

Addressing Prop-
erties

0 Byte(1) Addressing mode associated with this external symbol. If control is
received from the operating system at an entry point named by this
symbol, these addressing properties will determine the addressing
mode.

X'00' AMODE not specified (default=24)

X'01' AMODE(24)

X'02' AMODE(31)

X'03' AMODE(ANY) (either 24-bit or 31-bit: an entry point can tol-
erate either addressing mode)

X'10' AMODE(MIN): the program management binder can set the
AMODE to the minimum AMODE of all entry points in the
program object.

All other values are reserved.

Residence Prop-
erties

1 Byte(1) Residence mode associated with this external symbol.

X'00' RMODE not specified (default=24)

X'01' RMODE(24)

X'03' RMODE(31)

All other values are reserved.

Note: RMODE(31) is equivalent to OBJ RMODE(ANY).

Text Record Style 2.0-3 Bit(4) Designates the style of text to be accepted into this class. (See “Text
Record” on page 374 for further details.)

Note: Text is valid only for ED and PR items.

B'ðððð' Byte-oriented data. The “Address” field in the Text record
provides the offset within the designated element at which
the data bytes are to be placed.

B'ððð1' Structured-record (binder-defined) data. Only one form of
structured-record data is currently defined (see “Identifica-
tion Record Data Field” on page 376 and Figure 142 on
page 376 for a description).

B'ðð1ð' Unstructured-record (user-defined) data

All other values are reserved.

Note: The Text Record Style in the ED record will be matched against
that on the text records for this element, as a safety check.

All text data within a class must be of the same style.

370 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Figure 137 (Page 2 of 4). External Symbol Definition Behavioral Attributes

Field Offset Type Description

Binding Algorithm 2.4-7 Bit(4) Type of binding action to be performed:

B'ðððð' Concatenate: each of the section contributing elements
within the designated class will be concatenated by placing
the contributions “end to end,” with boundary alignment.
(This is typified by current OBJ SD items.)

B'ððð1' Merge: identically named parts will be “merged” by retaining
the longest length and most restrictive alignment. (This is
typified by current OBJ CM and PR items.) The merged
parts will then be concatenated (with differently-named
parts possibly having different alignments) in a program
management binder-created class. Only parts are allowed
in a MERGE class.

All other values are reserved.

Tasking Behavior 3.0-2| Bit(3) Translators wishing to specify the “traditional” tasking and concurrency
attributes can use the following settings:

B'ððð' Unspecified

B'ðð1' NON-REUS: Not serially reusable

B'ð1ð' REUS: serially reusable

B'ð11' RENT: re-entrant

All other values are reserved.

Note that RENT implies REUS.

 3.3 Bit(1) Reserved.

Read-Only 3.4 Bit(1) Read-only indicator; no stores are allowed into this object, so the
system can place it into protected storage.

B'ð' Not read-only

B'1' Read-only

Executable 3.5-7 Bit(3) Executable or not-executable indicator

B'ððð' Not specified (currently)

B'ðð1' Not executable (That is, “This is data.”)

B'ð1ð' Executable (That is, “This is code.”)

All other values are reserved.

Note: These flags can be applied to ED, LD, and ER elements. LD
elements can also inherit the executability properties of the element to
which they belong.

 | 4.0-3 Bit(4) Reserved. Must be zero.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 371

 GOFF Formats

Figure 137 (Page 3 of 4). External Symbol Definition Behavioral Attributes

Field Offset Type Description

Binding Strength| 4.4-7 Bit(4) Strength of a definition or reference:

B'ðððð' Strong reference or definition

B'ððð1' Weak reference or definition

All other values are reserved.

Weak references are handled as in current products; the interactions
with definitions are as follows:

Strong Reference
If unresolved, an “out-of-module” external library search will be
made for a name to resolve the reference.

Weak Reference
If unresolved, no “out-of-module” external library search will be
made to resolve the reference.

Strong Definition
can be resolved to any reference. (This is the default, and
normal, definition strength.)

Class Loading
Behavior

5.0 Bit(1) Determines whether or not the elements in this class will be loaded with
the module when a LOAD (or similar) request to the operating system is
satisfied by bringing the program object into storage.

B'ð' Load this class with the module.

B'1' Do not load this class with the module.

Note: Such classes can be loaded at other times through
the use of the program management binder API.

 5.1 Bit(1) Reserved (must be zero).

COMMON Flag 5.2 Bit(1) If 1, indicates that this section should be treated as an “old” COMMON:
that is, as like any other CM section. If more than one COMMON is
present, the longest length will be retained; if an SD section with the
same name is present, its length and text will be retained. The only
text class supported is B_TEXT.

 5.3 Bit(1) Reserved.

Binding Scope 5.4 Bit(4) Requested binding or resolution-search scope of an external symbol.

B'ðððð' Unspecified

B'ððð1' Section scope (“local”)

B'ðð1ð' Module scope (“global”)

B'ðð11' Library scope.

| B'ð1ðð' Import-Export scope

 6.0-2 Bit(3) Reserved.

372 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Figure 137 (Page 4 of 4). External Symbol Definition Behavioral Attributes

Field Offset Type Description

Alignment 6.3-7 Bit(5) Storage alignment requirement of this object

Bits Implied Alignment of the Object

B'ððððð' byte

B'ðððð1' halfword

B'ððð1ð' fullword

B'ððð11' doubleword

B'ðð1ðð' quadword (16 bytes)

B'ð11ðð' 4KB page

B'11111' Address or data space

All other values are reserved.

Note: Alignment bits = log2(boundary_size).

 7-9 Byte(3) Reserved.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 373

 GOFF Formats

ESD Item Behavioral Attribute Assignment
Figure 138 shows which Behavioral Attributes apply to the different ESD items.
Note that the attributes of PR items (with the exception of Alignment) are deter-
mined from the element EDID to which they belong.

Figure 138. Specifiable External Symbol Behavioral Attributes

Field SD ED LD PR ER

Addressing Properties Y Y

Residence Properties Y

Text Record Style Y

Binding Algorithm Y

Tasking Behavior Y

Read-Only Y

Executable Y(1) Y Y

Binding Strength Y Y

Class Loading Behavior Y

COMMON Flag Y

Alignment Y Y

Note: (1) The Executable property would apply to all LDs in this element.

 Text Record
This GOFF definition describes three basic mechanisms or styles of supplying text
information:

� Byte-oriented data is an unstructured stream of bytes to be placed at a speci-
fied offset (“address,” for Assembler users) within a designated element of the
program object.

Byte-oriented data is typified by machine language instructions and data (as in
current OBJ TXT records). (These can be thought of as analogous to
“U-format” inputs.)

� Structured-record data is in the form of fixed-length records whose internal
structure is known to and defined by the program management binder, and
which will be placed in the C'B_IDRL' class. (These can be thought of as anal-
ogous to “F-format” inputs.)

The only currently acceptable form is 19-byte IDR data. (See Figure 142 on
page 376.) Data records of any other length or content must be defined by the
program management binder.

An example of structured-record data is current OBJ IDR data, which is in the
form of one or two 19-byte structures on an OBJ END record.

� Unstructured-record data is in the form of records whose internal structure is
(and will remain) unknown to the program management binder, which will
simply append such records (prefixed by a length field) at the current end of
the designated element. The length of each such record must be supplied by
its provider. (These can be thought of as analogous to “V-format” inputs.)

Examples of unstructured-record data are current OBJ SYM data and GOFF
ADATA records.

374 DFSMS/MVS V1R4 Program Management

 GOFF Formats

A text record has the following format:

Figure 139. Text Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'031000' if not continued
X'031100' if continued

 3.0-3 Bit(4) Reserved.

Text Record Style 3.4-7 Bit(4) Designates the style of text data on this record:

B'ðððð' Byte-oriented data. The “Address” field provides the posi-
tion at which the data bytes are to be placed.

B'ððð1' Structured-record data

B'ðð1ð' Unstructured-record data

All other values are reserved.

Note: This field replicates a similar field in the element definition, so
that text records can be checked for consistency.

Element ESDID 4-7 Binary(4) ESDID of the element or part to which the data on this (and any sub-
sequent continuation) records belongs.

Note: Since the ED or PR record contains both the class name and
the ESDID of the Section Definition (SD) record, this field uniquely iden-
tifies the program object element to which this data belongs.

 8-11 Binary(4) Reserved.

Offset 12-15 Binary(4) Starting offset from the element or part origin of the text on this (and
any subsequent continuation) records. This field must be zero for
structured-record and unstructured-record styles of data.

Note: The offset for Assembler-produced text can be relative to a
nonzero element origin.

Text Field True
Length

16-19 Binary(4) If the Text Encoding Type in the following field is zero, this field must be
zero. If the Text Encoding Type is nonzero, this field specifies the
length of the text after expansion.

Text Encoding 20-21 Binary(2) If the text on this record is not compressed or not encoded, this field
must be zero. A nonzero value indicates that the data is encoded, and
will require decoding, expansion, or other treatment. See “Text
Encoding and Compression” on page 377.

Data Length 22-23 Binary(2) Total length in bytes of the data on this (and any following continuation)
record. This length cannot be zero.

Data 24-* Byte(n) The next n bytes of data.

Note: The IDR data must follow conventions and rules for translator-
produced IDR data. (See Figure 142 on page 376.) The format for
emitting IDR data is given in “Identification Record Data Field” on
page 376 below.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 375

 GOFF Formats

Text Continuation Record
The format of a text continuation record is as follows:

Figure 140. Text Continuation Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'031200' if not continued
X'031300' if continued

Data 3-* Byte(n) Up to n bytes of data.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

Identification Record Data Field
Identification records have a fixed format and fixed content, both defined by the
program management binder. Each Identification Data field of a (structured-record)
data record has the following format:

Figure 141. Identification Data Element Field

Field Offset Type Description

 0 Byte(1) Reserved.

Type 1 Byte(1) Type of IDR element:

X'00' Primary-translator identification data

X'01' Secondary-translator identification data

Note: This corresponds to the second IDR field on current
OBJ END record.

All other values are reserved.

Length 2-3 Binary(2) Total length in bytes of the data on this field. This length must be 19
bytes.

IDR Data 4-* Byte(n) The n bytes of identification data

The format of an IDR data entry is shown (using Assembler Language notation) in
the following figure.

Translator DS CL1ð Translator identification (“PID Number”)

Version DS CL2 Version Level (ð1 to 99)

Modification DS CL2 Modification Level (ð1 to 99)

Trans_Date DS CL5 Translation date in Julian format (YYDDD)

Figure 142. IDR Data Element

If the length of the Translator Identifier is fewer than 10 characters, it must be
padded to the right with blanks.

Note: The binder treats the two-digit year in the IDR data as follows:

IF (YY>65)

THEN YEAR= 19ðð+YY

ELSE YEAR= 2ððð+YY

376 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Text Encoding and Compression
In those cases where some value is gained by a translator's encoding, com-
pressing, or encrypting some or all of the text, the following structures appear in the
“Data” portion of the record described in Figure 139 on page 375, depending on
the “Text Encoding Type.” Only one method of encoding is supported.

Note: Run-time decoding and/or decryption is the responsibility of the loaded
program, which should place its encoded text into a special class that can be
loaded (on demand) at run time.

Figure 143. Text Encoding Types

Text
Encoding

Data Field

X'0001' The Data field of the text record contains one or more instances of the following three sub-fields, as
determined by the “Data Length” field:

2 2 %─────────── L ─────────5

 ┌───────┬───────┬─────────────────────────┐

│ R │ L │ L bytes of data │

 └───────┴───────┴─────────────────────────┘

� A nonzero unsigned repeat count R (Binary(2))
� A nonzero unsigned string length L (Binary(2))
� A string of bytes (Char(L)) whose length is specified by the preceding string length sub-field.

The expanded text will be R×L bytes long, and will contain R copies of the L bytes.

X'0002'-
X'FFFF'

Reserved.

Relocation Directory Record
A relocation directory (“RLD”) record has the following format:

Figure 144. Relocation Directory Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'032000' if not continued
X'032100' if continued

 3 Byte(1) Reserved.

Length 4-5 Binary(2) Total length of the relocation data on this record. This length cannot be
zero.

Relocation Data 6-* Byte(n) Up to n bytes of relocation data. The format of the RLD data elements
is shown in Figure 145 on page 378.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 377

 GOFF Formats

Relocation Directory Data Element
The format of a relocation directory (“RLD”) data item is shown in Figure 145
below. Note that a relocation directory data item can be from 8 to 28 bytes long,
depending on which fields are present. The presence or absence of each field is
determined by the “FLAGS” field. Offsets shown assume all fields are present.

Figure 145. Relocation Directory Data Element

Field Offset Type Description

Flags 0-5 Byte(6) Flags describing this RLD item. The flags are shown in Figure 147 on
page 379.

 6-7 Byte(2) Reserved.

R Pointer 8-11 Binary(4) ESDID of the ESD entry (ED or ER) which will be used as the basis for
relocation.

� For internal references, this will be the ED ESDID defining the refer-
enced element. (The offset of the referenced position within the ref-
erenced element will have been placed by the translator in the
target text field of the address constant.)

� For external references, this will be the ER or PR ESDID describing
the referenced symbol.

P Pointer 12-15 Binary(4) ESDID of the element within which this address constant resides.

Offset 16-19 Binary(4) Offset within the element described by the P pointer where the adcon is
located; the place where the address constant can be found; the posi-
tion of the field to be updated or relocated. This field is called the fixup
target, relocation target, or simply target.

Note: The constant part of a translator's address expression is stored
in the “Target Field” (at this offset, in the element defined by the P
pointer). It can contain a constant, an offset, or be ignored (“not
fetched”).

| | 20-23| Binary(4)| Reserved.

| | 24-27| Binary(4)| Reserved.

Note that RLD records will normally be smaller if the RLD data is sorted by
P-pointer, because typical text elements contain more than a single adcon.

Relocation Directory Continuation Record
The format of a relocation directory continuation record is as follows:

Figure 146. Relocation Directory Continuation Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'032200' if not continued
X'032300' if continued

Data 3-* Byte(n) Up to n bytes of data.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

378 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Relocation Directory Data Element Flags Field
The format of the 6-byte Flags field of a relocation directory (“RLD”) data element is
as follows:

Figure 147 (Page 1 of 2). Relocation Directory Data Element Flags Field

Field Offset Type Description

Same R-ID 0.0 Bit(1) Indicates whether or not this RLD item has the same R pointer as the
previous item. If yes, the R pointer (R-ID field) is omitted from this item.

B'ð' Different R pointer

B'1' Same R pointer as the previous RLD item.

Same P-ID 0.1 Bit(1) Indicates whether or not this RLD item has the same P pointer as the
previous item. If yes, the P pointer (P-ID field) is omitted from this item.

B'ð' Different P pointer

B'1' Same P pointer as the previous RLD item.

Same Offset 0.2 Bit(1) Indicates whether or not this RLD element has the same offset as the
previous item. If yes, the Offset field is omitted from this item.

B'ð' Different offset from the previous item.

B'1' Same offset as the previous RLD item.

 0.3-4 Bit(2) Reserved.

| | 0.5| Bit(1)| Reserved.

Offset Length 0.6 Bit(1) Indicates the length of the Offset field in this RLD item:

B'ð' Offset is 4 bytes long.

Addressing Mode
Sensitivity

0.7 Bit(1) Indicates whether or not the final address should have its high-order bit
set according to the addressing mode of its target.

B'ð' No addressing mode sensitivity

B'1' Mode sensitive: set addressing-mode bit (or bits) in the
address of this field, according to the AMODE of the R-pointer
element.

Note: This bit is set only for V-type constants.

Regardless of this setting, specifying the HOBSET binder
option sets the addressing mode bit in all V-type adcons which
reference locations above 16 MB.

R-Pointer Indica-
tors

1 Byte(1) Indicates what type of data should be used as a “second operand” in
this relocation or fixup action, and the type of referent. The two fields
are shown below.

Reference Type 1.0-3 Bit(4) Indicates what type of data will be used as the “second operand” of the
relocation action:

0 R-address.
1 R-Offset relative to the start of the referrent
2 R-Length. (The length value associated with an LD item is zero.)

All other values are reserved.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 379

 GOFF Formats

Figure 147 (Page 2 of 2). Relocation Directory Data Element Flags Field

Field Offset Type Description

Referent Type 1.4-7 Bit(4) Indicates the type of item which is used as the referent of the relocation
operation. For offset-type constants, indicates the type of item which is
used as a base for the offset calculation

0 Label (R-ID restricted to LD)
1 Element (R-ID restricted to ED)
2 Class (R-ID restricted to ED). Note that classes
3 Part (R-ID restricted to PR) do not have external names, so they

have no associated ESDID.

Action or Opera-
tion

2.0-6 Bit(7) Indicates what type of operation should be performed using the “second
operand” in this relocation or fixup action. (The first operand is the
fetched value, or zero.) All operations are 32-bit (signed fullword
integer) unless noted. In each case, the result of the operation replaces
the first operand.

0 + (the second operand is added to the first)
1 − (the second operand is subtracted from the first)

All other values are reserved.

Fetch Fixup
Target Field

2.7 Bit(1) Indicates whether or not the contents of the target field should be
fetched and used in evaluating the following expression.

� If this bit is zero, the contents of the fixup-target field will be
“fetched” and used as the first operand in subsequent operations.

� If this bit is one, the initial contents of the target field will be ignored,
and the “fixup” quantity will be stored over it. If no initial contents
has been fetched, the first operand's value is implicitly zero for the
indicated operations.

 3 Byte(1) Reserved.

Target Field Byte
Length

4 Binary(1) Unsigned byte length of the target field (adcon).

 5 Byte(1) Reserved.

The relationships between the Reference Type and Referent Type are shown in the
following table.

Figure 148. RLD-Element Referent and Reference Types

Reference Type Referent 0 (Label or
Part)

Referent 1 (Element) Referent 2 (Class)

Reference 0 (R-address) A(label) or (part) Not supported A(class origin) in which the
label, element, or part
belongs

Reference 1 (R-Offset) Offset of label or part rel-
ative to class origin

Not supported zero (offsets of classes are
determined only at
program loading time)

Reference 2 (R-Length) Zero (labels don't have a
length associated with
them)

Length of the element or
part

Length of the class to
which the label, element,
or part belongs

380 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Examples of RLD Data Items
In this section, we will give some examples showing how RLD elements can be
used.

� The four types of address constant used in current programs can be imple-
mented very simply: the R- and P-pointers and P-position offset are set in the
usual way, and the sequencing bits in the first byte of the Flags field are set
according to whether or not the three values are repeated from the previous
item. The Reference/Referent and Action bytes are set as follows:

 – A-con X'0000'
– A-con (with subtraction of the R-value) X'0002'

 – V-con X'0001'
 – Q-con X'1200'
 – CXD-con X'2201'

The Target Field Byte Length is set appropriately (for example, to 4, for 4-byte
adcons), and the remaining fields are set to zero.

shown by the associated

Deferred Element Length Record
A deferred-length (“LEN”) record can be used to supply the true length of an
element whose length was not known at the time the External Symbol Dictionary
(ESD) record was issued. The format of a LEN record is as follows; a LEN record
cannot be continued.

Figure 149. Deferred Section-Length Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record (X'033000')

 3-5 Byte(3) Reserved.

Length 6-7 Binary(2) The length of the deferred-length data items that follow. This length
cannot be zero.

Element-Length
Data

8-* Byte(n) Up to n bytes of element-length data. (See Figure 151 on page 382.)

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

The format of each 12-byte Deferred Element Length Data Element is as follows:

Figure 150. Deferred Element Length Data Item

Field Offset Type Description

ESDID 0-3 Binary(4) ESDID of the element for which this length value is supplied.

 4-7 Binary(4) Reserved.

Length 8-11 Binary(4) Length of the element.

A deferred element length data item cannot be split across records.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 381

 GOFF Formats

End of Module Record, With Optional Entry Point Request
The format of a module end (“END”) record is as follows:

Figure 151. End-of-Module Record, with Optional Entry Point Request

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'034000' if not continued
X'034100' if continued

 3.0-5 Bit(6) Reserved.

Flags 3.6-7 Bit(2) Indicator flags, indicating presence or absence of a requested entry
point:

B'ðð' No entry point is suggested or requested on this END
record. No subsequent fields on this record (other than the
Record Count) are valid, and they cannot be used for any
purpose.

B'ð1' An entry point is requested by internal offset and ESDID on
this END record. This ESDID can be either an EDID if the
nominated entry point is known to be within this entry point.
or an ERID if the nominated entry point is at an external
symbol referenced in this input module. The Name Length
field is zero. No continuation records are allowed.

B'1ð' An entry point is requested by external name on this END
record. The ESDID and Offset fields must be zero. Contin-
uation records are allowed. Note that if an entry point is
requested, the entry point name or class must be in
namespace 1.

B'11' Reserved.

AMODE 4 Byte(1) AMODE of requested entry point. See AMODE values in “External
Symbol Definition Behavioral Attributes” on page 369.

 5-7 Byte(3) Reserved.

Record Count 8-11 Binary(4) Count of GOFF logical records in this object file, including HDR and
END records. If no record count is provided, this field must contain
binary zero.

ESDID 12-15 Binary(4) ESDID of the element containing the requested module internal entry
point. If no entry point is requested, or if the entry point is requested by
name, this field must be zero.

 16-19 Binary(4) Reserved.

Offset 20-23 Binary(4) Translator-assigned offset (or address, for Assembler output) of the
requested module internal entry point. If no entry point is requested, or
if the entry point is requested by name, this field must be zero.

Note: Offset cannot be specified for external (ERID) entry point nomi-
nations.

Name Length 24-25 Binary(2) Total length of the external name. This length cannot be zero if a name
is present. It must be zero if an entry point is requested by ESDID and
Offset, or if no entry point is requested.

Entry Name 26-* Byte(n) The first n characters of the external name requested as the module
entry point.

Trailer Byte(m) Unused space at the end of a record is reserved, and cannot be used
for any other purpose.

382 DFSMS/MVS V1R4 Program Management

 GOFF Formats

End of Module Continuation Record, With Optional Entry Point
Name
The format of an end-of-module continuation record is as follows:

Figure 152. End-of-Module (Entry Point Name) Continuation Record

Field Offset Type Description

PTV 0-2 Byte(3) Type of record

X'034200' if not continued
X'034300' if continued

Entry Name 3-* Byte(n) Up to n bytes of data.

Trailer Byte(m) Unused space at the end of this record is reserved, and cannot be used
for any other purpose.

Migration from Old Object Formats
Migration of current OBJ usage to GOFF style is straightforward, and is necessary
only if the new GOFF facilities are needed. (The program management binder will
continue to accept OBJ records.)

In general, the first step in creating a GOFF record will be to initialize the record
buffer to binary zeros; most of the fields will not be needed, and zeros will provide
the proper default values.

The GOFF analogs of current OBJ facilities are shown here, along with examples
of the kinds of Assembler Language statements or operands that create them:

 � ESD records

OBJ ESD records can contain the following types of information:

– SD names, including PC elements (blank SD names): these are derived
from START, CSECT, and RSECT statements.

– CM names: these are derived from COM statements.

– LD names: these are derived from ENTRY statements.

– ER names (possibly, WX): these are derived from EXTRN and WXTRN
statements, and from the names in V-type address constants.

– PR names: these are derived from DXD statements, and Q-type address
constants containing DSECT names.

 � TXT records

Current OBJ TXT records contain simply an ESDID (of the section to which the
text belongs), a length, and an address. The contents of TXT records are
derived from the machine language instructions and data generated during the
assembly process.

 � RLD records

Each item on OBJ RLD records is derived from an A-type, V-type, or Q-type
address constant, or from a CXD statement.

 � END records

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 383

 GOFF Formats

Current OBJ END records can contain an optional entry point request (either as
an external name, or as an ESDID/offset combination to request entry within a
module), plus zero to two IDR elements. The data on the END record is
created by the translator (first IDR element), or is derived from the operand(s)
of the END statement (requested entry point and second IDR item).

 � SYM records

Current OBJ SYM records have no analog in GOFF records; they are produced
when the Assembler's TEST option is specified. The information currently col-
lected on SYM records should be produced in GOFF ADATA records, or in
some other translator-defined class. No mappings are shown for SYM data, nor
for other forms of symbol tables.

It is assumed that translators will not produce nonstandard forms of object module
records (for example, zero-data ESD records; blank SD items; etc.).

Module Header Records
The first record of a GOFF file must be a Module Header Record. It need only
contain the PTV bytes X'03F000'.

Mapping Object Module ESD Elements to GOFF Format
This section describes how elements appearing in Object Modules are represented
in the Generalized Object File Format format.

Mapping Object Module ESD SD Items to GOFF Format
OBJ ESD SD elements require three GOFF ESD records: one to define the section,
a second to define the class and element in which the text associated with the OBJ
section is to reside, and the third to define an LD item for the external symbol
named by the OBJ SD item. (GOFF SD names are not used for resolution; in
effect, OBJ SDs are replaced by GOFF elementIDs.) Note that the LD item is not
needed unless the OBJ SD name will be used to resolve external references.

These steps are shown in Figure 153.

Figure 153 (Page 1 of 2). Mapping OBJ ESD SD Items to GOFF Format

OBJ Element GOFF Element

SD element (1) GOFF SD item: all fields are zero, except:

� the Symbol Type is X'00'
� the ESDID is that of the section
� the Name Length is that of the OBJ SD name (cannot be zero), and the Name field contains

the SD name. (Remember that blank names must contain a single blank.)

384 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Figure 153 (Page 2 of 2). Mapping OBJ ESD SD Items to GOFF Format

OBJ Element GOFF Element

SD element (2) The GOFF element (ED) record: all fields are zero, except:

� the Symbol Type is X'01'
� the ESDID is that of the element

– Remember the element ESDID specified here, for use in subsequent TXT records
belonging to this OBJ CSECT.

� the Owning/Parent ESDID is that of the section just created
� the Offset is zero (except possibly for Assembler output; the offset is then taken from the

address field of the OBJ SD item)
� the Length is that of the OBJ SD (or -1 if a deferred length is supplied later)
� the Name Space ID is X'01'
� the Behavioral Attributes are all zero (except for Residence Mode, if it was specified; for

Assembler output, the Read-Only bit is set to the same value as the RSECT bit; and the
Alignment is set to B'ðð11')

� the Name Length is set to 6, and the Name field is set to C'B_TEXT'.

SD element (3) If the section name is blank, or is not used to resolve external references, this GOFF LD item
record is not needed. Otherwise, all fields are zero, except:

� the Symbol Type is X'02'
� the ESDID is that of the LD name
� the Owning ESDID is that of the element in which the text of the OBJ section is placed
� the Name Space ID is X'01'
� the Behavioral Attributes are set to zero (except that the Addressing properties are set to

match those of the OBJ SD's AMODE)
� the Name Length and Name are those of the OBJ SD element.

Mapping Object Module ESD PC Items to GOFF Format
PC items in OBJ format are actually defined by a blank SD name and a type of PC.
However, PC items could have a non-blank name. Note also that an OBJ SD item
with a blank name is invalid.

The table shows that PC items are uniquely identified by a blank name, so that
there is actually no need for a separate PC ESD type!

The same convention as for non-blank names applies for GOFF format; no special
treatment is required for blank section names, except that no LD record (SD item
(3)) is ever needed.

Thus, follow the same two steps as for SD items (1) and (2), using a Section Name
of a single blank.

Figure 154. OBJ Treatment of ESD PC Items and Blank Names

Name PC SD

blank valid invalid

nonblank undefined valid

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 385

 GOFF Formats

Mapping Object Module ESD LD Items to GOFF Format
OBJ ESD LD items behave in an identical fashion to those in GOFF records, and
the mapping from OBJ to GOFF format is straightforward, as shown in Figure 155.

Figure 155. Mapping OBJ ESD LD Items to GOFF Format

OBJ Element GOFF Element

LD element The GOFF LD item record: all fields are zero, except:

� the Symbol Type is X'02'
� the ESDID is that of the LD name
� the Owning ESDID is that of the element in which the text of the OBJ SD to which this LD

belongs will be placed
� the Offset is the offset of the LD within its OBJ SD section
� the Name Space ID is X'01'
� the Behavioral Attributes are set to zero (except that the Addressing properties can optionally

be different from those of the OBJ SD's AMODE and Binding scope is set to B'0010').
� the Name Length and Name are those of the OBJ LD element

Mapping Object Module ESD ER/WX Items to GOFF Format
OBJ ESD ER and WX items are mapped into nearly identical GOFF forms, shown
in Figure 156.

Figure 156. Mapping OBJ ESD ER/WX Items to GOFF Format

OBJ Element GOFF Element

ER or WX The GOFF ER record: all fields are zero, except:

� the Symbol Type is set to X'04'
� the ESDID is set to that of the ER item
� the Owning ESDID is that of the section (SD) to which this ER belongs
� the Behavioral Attributes are zero (except that the Binding scope field is set to B'0010' for

WX items and B'0011' for ER items)
� the Name Space ID is X'01'
� the Name Length and Name are set appropriately

Mapping Object Module ESD CM Items to GOFF Format
OBJ ESD records containing CM data provide the CM name, its ESDID, and its
length. (Alignment is implicitly doubleword.)

Note that Fortran BLOCK DATA sections can be handled as traditionally “overlaid”
SD items if they are specified as follows:

OBJ CM items are mapped onto GOFF format SD, ED, and (if needed) LD records
in exactly the same way as are SD parts (shown in “Mapping Object Module ESD
SD Items to GOFF Format” on page 384), except that the “COMMON Flag” bit is
set to B'1'.

Blank COMMON is treated specially by the binder (as it was by the linkage editor).
Blank COMMON never has initializing text even if a blank-named control section
(Private code) is present.

(The program management binder and the program object format support a much
more powerful way to handle “COMMON” or external data previously emitted as

386 DFSMS/MVS V1R4 Program Management

 GOFF Formats

OBJ SD items. They are then not mapped by the program management binder as
though they were SD items. This avoids the problem of order-dependent behavior
in the OM/LM assignment of lengths to CM items with initializing data specified in
an SD item.)

Mapping Object Module ESD PR Items to GOFF Format
OBJ ESD records containing PR data provide the PR name, its ESDID, and its
length and alignment requirements.

OBJ PR elements are mapped onto GOFF format PR records as indicated in
Figure 157. A GOFF SD record defines the section owning the PR item; this
record will have been previously issued. An ESD record defining an ED for class
C'B_PRV' should also be issued, and the Binding Algorithm field is set to B'ððð1'.

Figure 157. Mapping OBJ ESD PR items to GOFF Format

OBJ element GOFF element

PR element The GOFF ESD record items are set as follows: all fields are zero, except:

� The Symbol Type is set to X'03' (PR)

� Its ESDID is assigned.

� The owning ESDID is that of the owning ED (or zero if no ED record was provided, in which
case the program management binder will take a default action.)

� The Length is set to that of the PR item.

� The Name Space ID is X'02'

� The Behavioral Attributes are all set to zero, except that the Binding Algorithm field is set to
B'ððð1' and the Alignment field is set to indicate the desired PR alignment.

� The Name Length is set to that of the PR, and the PR name is placed in the Name field.

Note that the use of “owning EDs” is not recommended, and translators producing GOFF records
should not rely on the binder continuing to treat this as defaulting to B_PRV.

Mapping Object Module XSD Items to GOFF Format
The items on an XSD record map to GOFF ESD records in the same way as
shown in “Mapping Object Module ESD SD Items to GOFF Format” on page 384,
with the the following exceptions:

� Names need not be segmented

Mapping Object Module TXT Items to GOFF Format
OBJ text-record items are mapped onto GOFF format records as indicated in
Figure 158. First, a GOFF record defining the element in which the text resides
must have been issued, (see Figure 153 on page 384 under “SD Item (2)”). Then,
the GOFF text record would be created as follows; all other fields are zero.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 387

 GOFF Formats

Figure 158. Mapping OBJ TXT Items to GOFF Format

OBJ Element GOFF Element

TXT Set “Text Record Style” to B'ðððð'.

Text ESDID Element ESDID for the element in which the text resides.

Note: This is the ESDID that was “remembered” when the element ED record was emitted. See
Figure 153 on page 384.

Offset Offset

Text length Data length

Mapping Object Module RLD Items to GOFF Format
GOFF RLD records are quite similar to OBJ RLD records; their function is the
same, to describe address constants. The primary differences are that the
“sequencing” bits refer to the previous RLD item rather than to the next, GOFF
ESDIDs are 4 bytes long (rather than 2), the Offset field is 4 bytes (rather than 3),
and the flags field is 6 bytes (rather than 1). The mappings are shown in
Figure 159. All fields should be initialized to zero.

Figure 159. Mapping OBJ RLD Items to GOFF Format

OBJ Element GOFF Element

Same R-, P-
pointer Flags

Set bits as appropriate

R-, P- pointers
and Offset

R, P pointers are expanded from 2 bytes to 4 (if present); Offset expanded from 3 bytes to 4 Note
that in the OBJ implementation, the R-pointer for CXD items is set to zero. In GOFF files this
should contain the EDID of the class whose length is requested. The binder treats zero R-ID as
defaulting to B_PRV, but this should not be relied on.

R-Pointer Indi-
cators and
Action Bytes

The OBJ 4-bit type field is mapped to a 2-byte “Indicators and Action/Fetch” field:

� B'ðððð' (A-type) becomes X'0000'
� B'ðððð' (A-type with subtraction) becomes X'0002'
� B'ððð1' (V-type) becomes X'0001'
� B'ðð1ð' (Q-type) becomes X'1200'
� B'ðð11' (CXD-type) becomes X'2201'

Target Field
Byte Length

The OBJ 2-bit length field is mapped to the GOFF 8-bit Target Length field, and 1 is added.

Relocation Sign This bit (X'02') is part of the “Action” field; see above.

Note: Incompatible or inconsistent OBJ uses (such as an A-con and a V-con
referring to the same name) can be flagged by the program management binder.

Mapping Object Module END Items to GOFF Format
Mapping the information in OBJ END records will typically require two (and possibly
three) GOFF records, the first for IDR information (shown in Figure 160 on
page 389), the second (possibly) if a deferred item length is desired (shown in
Figure 161 on page 389), and the third for END and (possibly) entry point informa-
tion (shown in Figure 162 on page 389). (The case where no deferred length is
provided and no entry point is requested is shown in “Mapping Object Module
END-Entry Items to GOFF Format” on page 389.)

388 DFSMS/MVS V1R4 Program Management

 GOFF Formats

Mapping Object Module END IDR Items to GOFF Format
IDR data from OBJ END records is actually mapped into a text class named
C'B_IDRL'. The procedure to follow is shown in Figure 160.

Figure 160. Mapping OBJ END IDR Items to GOFF Format

OBJ Element GOFF Element

Initially: Issue an ED record with class name C'B_IDRL', and set the Text Record Style to B'ððð1'.
Assign the Owning ID of the section SD to which this element belongs. The EDID on this record
will be used for the IDR data to follow (on one or more separate records).

IDR Data Emit a GOFF Text record, with “Text Record Style” set to B'ððð1' (meaning “structured data”),
ESDID set to the value defined on the ED record just described, Offset 0, and Data Length 23.
The 23 bytes of data are:

� 1 reserved byte
� 1 byte set to X'00' (primary translator data)
� 2 bytes containing decimal 19 (the length of the following data)
� 19 bytes of normal IDR data.

Mapping Object Module END Section-Length Elements to GOFF
Format
OBJ END records can supply the length of a section whose length was not known
at the time the ESD SD item was produced. In the GOFF format, this information is
provided on a new type of record (“LEN”), which must be emitted ahead of the END
record. It is shown in Figure 161. Note that the length must be that of an element,
not of a program object section (which has no text or length associated with it).
Note also that while OBJ END records can supply only a single deferred length (for
a single SD item), GOFF records can accommodate multiple deferred lengths.

Figure 161. Mapping OBJ END Section Length Items to GOFF Format

OBJ Element GOFF Element

END with
section length

Emit a deferred-length record with Length 12, and data as follows:

� 4-byte EDID for the element whose length is being provided.
� 4 byte reserved field, set to zero.
� 4-byte length for the specified element.

Mapping Object Module END-Entry Items to GOFF Format
OBJ END records can request an entry point either by name or by ESDID and
offset; these two forms are provided by the GOFF format.

Figure 162 (Page 1 of 2). Mapping OBJ END-Entry Items to GOFF Format

OBJ Item GOFF Element

END (no entry
point request)

Set the Flags bits to B'ðð', and the rest to zero. (In other words, nothing to do!)

END with entry
point ED and
offset

� Set the Flags bits to B'ð1', and the rest to zero.
� Set the ESDID field to the EDID of the element in which the desired entry point is located
� Set the Offset to the entry point offset within the designated element.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 389

 GOFF Formats

Figure 162 (Page 2 of 2). Mapping OBJ END-Entry Items to GOFF Format

OBJ Item GOFF Element

END with entry
point name

� Set the Flags bits to B'1ð'.

� Set the 2-byte Name Length to the name of the requested entry point. Note that this name
should already have appeared on an LD item (for an internal entry point) or an ER item (for
an external entry point) in this object module.

Associated Data (ADATA) Record Types
The following assignments have been made for ADATA record types:

Class names are assigned to ADATA records in a very simple way: take the four
hexadecimal digits of the ADATA record type, convert them to character format,
and append them to the stem C'C_ADATA'. For example, the Class name for an
ADATA record of type X'0000' would be C'C_ADATAðððð'.

Figure 163. Associated Data (ADATA) Record Type Assignments

Type Description

X'0000-7FFF' Translator (and other components) records. (Note that some values
in the range X'0000-0130' are already in use by High Level
Assembler, COBOL/370, and OS/2 PL/I.)

X'8000-8FFF' Program Management records.

X'9000-DFFF' Reserved.

X'E000-EFFF' Reserved for non-IBM translators.

X'F000-FFFF' User records. IBM products and non-IBM translators will not create
records with types in this range.

Associated Data (ADATA) Records
Associated data records can be created by a translator for direct inclusion with the
program object as follows:

� Issue an element definition (ED) record for the class into which the records are
to be placed. The class name is chosen as shown in “Associated Data
(ADATA) Record Types.” Retain the ED associated with that type of ADATA
record for use as each is emitted.

� In the Behavioral Attributes field, set all fields to zero except:

– Class Loading Behavior is set to B'1'

– Binding Algorithm is set to B'ð' (CAT).

– Set the “Text Record Style” to B'ðð1ð', indicating that the data in this class
is “unstructured” (so that the program management binder will not attempt
to interpret it in any way).

– Two other fields could be set: Read-Only and (not) Executable.

� For each ADATA record, create a GOFF text record as follows:

– Set the Element ESDID to the ED value created for the class to which this
type of record belongs.

– Set the Offset to zero.

390 DFSMS/MVS V1R4 Program Management

 GOFF Formats

– Set the Data Length to the length of the ADATA record, and fill the DATA
field with the actual ADATA record itself.

The program management binder will accumulate the records of each type into the
specified class, by appending each new record to the end of the previous record in
that class.

 Appendix I. Generalized Object File Format(GOFF) Input Conventions and Record Formats 391

 GOFF Formats

392 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Appendix J. Binder API Buffer Formats

This appendix contains General-use Programming Interface and Associated Guid-
ance Information.

This appendix describes the external formats of program object data that are used
to describe, bind, load and execute program objects.

Program object data is used as follows:

� Using the binder API, you can read, write or modify class-oriented data in the
program object. API calls GETD, GETE, GETN and PUTD either create or
accept module data in the external format. For more information see
Chapter 8, “Using the Binder Application Programming Interface” on page 127

� Using the Fast Data Access API, you can retrieve the same data that is
obtained from the GETD API call, without incurring the overhead of a binder
dialog. For more information, see Appendix L, “IEWBFDA—Fast Data Access”
on page 455.

Regardless of which method you use to process the program object data, you can
use the IEWBUFF macro to allocate, initialize, map and delete buffers for each
class of interest. For more information on using IEWBUFF, see “Generating and
Mapping Data Areas” on page 144.

| All binder buffer formats are described in this appendix. Version 1 buffers were the
| only version supported in DFSMS/MVS 1.1 and 1.2, commonly referred to as PM1.
| Version 2 buffers were introduced in DFSMS/MVS 1.3 (also known as PM2) and
| support the new function shipped in that release. Version 3 buffers support all of
| the new function introduced in DFSMS/MVS 1.4 (also known as PM3). The PM3
| binder and Fast Data APIs support all formats, depending on the VERSION speci-
| fied in the IEWBUFF macro invocation. If VERSION is not specified on the
| IEWBUFF macro, version 1 buffers are defaulted.

| The remainder of this section contains the external buffer formats for each version.
| The version 2 and 3 buffer sets are each followed by a discussion of migration from
| earlier buffer formats.

Data buffers are similarly structured. Each consists of a 32-byte buffer header fol-
lowed by one or more entries, the number of entries being determined by the SIZE
or BYTES specification on the IEWBUFF macro. Each of the buffer descriptions
show the buffer header and one buffer entry. The following notes apply to all
formats and versions:

� The information stored in the buffer header can be used by your program to
process data in any class or buffer version but should not be modified.

� Names do not appear in the buffer entries; instead, the names are represented
by name lengths and pointers which locate the name string elsewhere in
addressable storage. In the following record layouts, the name is shown as a
6-byte name field followed by its length and pointer components. Note that the
6-byte name field is not generated by IEWBUFF.

� Fields shown as reserved should be set to zero in input.

� ESD and RLD code values are defined symbolically in SYS1.MACLIB members
IEWBCES and IEWBCRL, respectively.

 Copyright IBM Corp. 1991, 1997 393

 API Buffer Formats

Version 1 Buffer Formats
Version 1 buffers are those supported in DFSMS/MVS Version 1, Releases 1.0 and
2.0, program management (PM1). They are also generated in DFSMS/MVS
Version 1 Release 3.0 (PM2), if VERSION=1 is specified or defaulted on the
IEWBUFF macro. This section contains buffer layouts for each data class sup-
ported in PM1, in the order shown in the following table:

For version 2 buffers, see “Version 2 Buffer Formats” on page 404.

Figure 164. Version 1 buffer formats. The table shows the sequence of buffer types in the
remainder of this section. The IEWBUFF TYPE parameter is shown in addition to the asso-
ciated class name. Note that the class name specified on version 1 API calls can be either
@class or B_class in PM2.

CLASS TYPE= DESCRIPTION

@ESD or B_ESD ESD External Symbol Dictionary

@IDRB or B_IDRB IDRB Binder Identification Record (IDR)

@IDRL or B_IDRL IDRL Language Processor Identification Data (IDR)

@IDRU or B_IDRU IDRU User Identification Data (IDR)

@IDRZ or B_IDRZ IDRZ AMASPZAP Identification Data (IDR)

@RLD or B_RLD RLD Relocation Directory Data

@SYM or B_SYM SYM Internal Symbol Table

@TEXT or B_TEXT TEXT Program Text (instructions and data)

(none) NAME Binder Name List

(none) XTLST Extent List

394 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

ESD Entry (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBESD Binder ESD buffer, Version 1

 ESDH_BUFFER_ID Char ð 8 Buffer identifier “IEWBESD ” .

 ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 ESDH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 ESDH_ENTRY_LENG Binary 16 4 Length of each entry

 ESDH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

ESDH_ENTRY_ORIGIN 32 First ESD entry

 ESD_ENTRY ESD entry

4 ESD_TYPE Char ð 2 ESD Type

 C' ' Null Entry

C'SD' Control Section or

 Private Code

CSECT if ESD_SCOPE=M

private if ESD_SCOPE=S

C'CM' Common (Named or unnamed)

 C'LD' Label Definition

 C'ER' External Reference

strong if ESD_SCOPE=L

 weak if ESD_SCOPE=M

 C'PR' Pseudoregister

5 C'ST' Segment Table (Overlay)

5 C'ET' Entry Table (Overlay)

5 C'DS' Dummy Section

5 C'PD' Pseudoregister Definition

 ESD_SCOPE Char 2 1 Scope of Name

 ' ' Not applicable

C'S' Section (Types SD/private,ST,ET)

C'M' Module (Types SD/CSECT,LD,

 ER/weak,CM,PR,DS,PD)

C'L' Library (Type ER/strong)

 ESD_TEXT Char 3 1 Label Type

C'I' Instructions (Types SD,ET,ER,LD)

C'D' Data (Type CM,DS,ER,LD,PD,PR,ST)

 C' ' Unspecified

 ESD_ALIGN Binary 4 1 Alignment Specification from

language processor (Type PR)

 X'ðð' Byte

 X'ð1' Halfword

 X'ð2' Fullword

 X'ð3' Doubleword

 ESD_STORAGE Binary 5 1 Storage Specification (Type SD)

 X'ðð' Any Storage

X'1ð' Read-only Storage (Type SD)

\\\ RESERVED \\\ Binary 6 2 Reserved (must be zero)

 ESD_USABILITY Binary 8 1 Reusability (Type SD)

 X'ðð' Unspecified

 X'ð1' Non-reusable

 X'ð2' Reusable

 X'ð3' Reentrant

 X'ð4' Refreshable

Figure 165 (Part 1 of 2). Format for ESD Entries

 Appendix J. Binder API Buffer Formats 395

 API Buffer Formats

 Field Field Off Leng Description

 Name Type set

 ESD_RMODE Binary 9 1 Residence Mode (Type SD)

 X'ðð' Unspecified

 X'ð1' RMODE 24

X'ð3' RMODE Any (24 or 31)

 ESD_AMODE Binary 1ð 1 Addressing Mode (Type SD)

 X'ðð' Unspecified

 X'ð1' AMODE 24

 X'ð2' AMODE 31

X'ð3' AMODE Any (24 or 31)

X'ð4' use minimum AMODE

\\\ RESERVED \\\ Binary 11 1 Reserved, must be zero

 ESD_AUTOCALL Binary 12 1 Autocall Specification (Type ER)

 X'8ð' Nevercall

2 ESD_STATUS Bit 13 1 Resolution Status (Types ER,PR)

1... Symbol has been resolved

.1.. Symbol processed by autocall

 ..xx xxxx Reserved

\\\ RESERVED \\\ Binary 14 2 Reserved, must be zero

2 ESD_REGION Binary 16 2 Overlay Region Number

 (Types SD,CM,ET)

2 ESD_SEGMENT Binary 18 2 Overlay Segment Number

 (Types SD,CM,ET)

 ESD_LENG Binary 2ð 4 Length of the defined section

 or pseudoregister

 (Types CM,SD,DS,ET,PD,PR,ST)

3 ESD_SECTION_OFFSET Binary 24 4 Text offset within section

 (Types LD,PD)

2 ESD_MODULE_OFFSET Binary 28 4 Text offset within module

 (Types SD,CM,LD,ST,ET,DS)

\\\ RESERVED \\\ Binary 32 2 Reserved (must be zero)

 ESD_NAME Name 34 6 Symbol name. (Blank OK for

private code and common.)

ESD_NAME_CHARS Binary 34 2 length of name in bytes

ESD_NAME_PTR Pointer 36 4 pointer to name string

\\\ RESERVED \\\ Binary 4ð 2 Reserved (must be zero)

2 ESD_TARGET Name 42 6 Name of the section in which the

symbol is defined (Type ER)

ESD_TARGET_CHARS Binary 42 2 length of name in bytes

ESD_TARGET_PTR Pointer 44 4 pointer to name string

\\\ RESERVED \\\ Binary 48 2 Reserved (must be zero)

1 ESD_RESIDENT Name 5ð 6 Name of the section in which

this ESD entry resides.

 (Types LD,ER,PR,PD)

ESD_RESIDENT_CHARS Binary 5ð 2 length of name in bytes

ESD_RESIDENT_PTR Pointer 52 4 pointer to name string

Notes:

 1. Ignored on input to the binder.

 2. Recalculated by the binder.

 3. Calculated on the ED and ER records, required input to LD.

 4. ESD_TYPE is further qualified by ESD_SCOPE.

 5. Binder-generated ESD type.

Figure 165 (Part 2 of 2). Format for ESD Entries

396 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Binder Identification Data (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBIDB Binder IDR Data, Version 1

 IDBH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDB ”

 IDBH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDBH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDBH_ENTRY_LENG Binary 16 4 Length of each entry

 IDBH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDBH_ENTRY_ORIGIN 32 First IDR entry

1 IDB_ENTRY Binder IDR Entry

 IDB_BINDER_ID Char ð 1ð Binder identification

 IDB_VERSION Char 1ð 2 DFSMS version

 IDB_RELEASE Char 12 2 DFSMS release

 IDB_DATE_BOUND Char 14 7 Date of binding (YYYYDDD)

 IDB_TIME_BOUND Char 21 6 Time of binding (HHMMSS)

\\\ RESERVED \\\ Binary 27 1 Reserved, must be zeros

 IDB_MODULE_SIZE Binary 28 4 Length of module text

IDB_CALLERID_CHARS Binary 32 2 Number of significant characters

 in IDB_CALLERID

 IDB_CALLERID Char 34 8ð Caller identification

\\\ RESERVED \\\ Binary 114 2 Reserved, must be zeros

Notes:

 1. Generated by binder during binding.

Figure 166. Format for Binder Identification Data

 Appendix J. Binder API Buffer Formats 397

 API Buffer Formats

Language Processor Identification Data (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBIDL Language Processor IDR Record,

 Version 1

 IDLH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDL ”

 IDLH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDLH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDLH_ENTRY_LENG Binary 16 4 Length of each entry

 IDLH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDLH_ENTRY_ORIGIN 32 First IDR entry

3 IDL_ENTRY Language IDR Entry

IDL_PID_ID Char ð 1ð Translator product ID

 IDL_VERSION Char 1ð 2 Version of the translator

 IDL_MOD_LEVEL Char 12 2 Modification level of translator

2 IDL_DATE_PROCESSED Char 14 7 Date compiled or assembled

 (yyyyddd)

\\\ RESERVED \\\ Binary 21 1 Reserved, must be zeros

1 IDL_RESIDENT Name 22 6 The name of the section to

which this IDR data applies.

IDL_RESIDENT_CHARS Binary 22 2 length of name in bytes

IDL_RESIDENT_PTR Pointer 24 4 pointer to name string

Notes:

 1. Ignored on input to the binder.

 2. If the module is saved as a load module, dates are truncated

to 5 characters (YYDDD).

 3. There normally is only one IDRL entry per section. However, if

the section was produced by a multistage compilation, there is one

IDRL record for each processor involved in the generation of the object

code.

Figure 167. Format for Language Processor Identification Data

398 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

User Identification Data (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBIDU User IDR Data, Version 1

 IDUH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDU ”

 IDUH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDUH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDUH_ENTRY_LENG Binary 16 4 Length of each entry

 IDUH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDUH_ENTRY_ORIGIN 32 First IDR entry

IDU_ENTRY User IDR entry

2 IDU_CREATE_DATE Char ð 7 Date the entry was created

 (yyyyddd)

\\\ RESERVED \\\ Binary 7 1 Reserved, must be zeros

 IDU_DATA_CHARS Binary 8 2 Number of significant characters

 in IDU_DATA

2 IDU_DATA Char 1ð 8ð Defined by the user

1 IDU_RESIDENT Name 9ð 6 Name of section to which this

IDR data applies

IDU_RESIDENT_CHARS Binary 9ð 2 length of name in bytes

IDU_RESIDENT_PTR Pointer 92 4 pointer to name string

Notes:

 1. Ignored on input to the binder.

 2. If the module is saved as a load module, the identification data is

truncated to 4ð bytes and the creation date to 5 (yyddd).

Figure 168. Format for User Identification Data

 Appendix J. Binder API Buffer Formats 399

 API Buffer Formats

AMASPZAP Identification Data (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBIDZ AMASPZAP IDR Data, Version 1

 IDZH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDZ ”

 IDZH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDZH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDZH_ENTRY_LENG Binary 16 4 Length of each entry

 IDZH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDZH_ENTRY_ORIGIN 32 First IDR entry

IDZ_ENTRY Superzap IDR entry

2 IDZ_DATE Char ð 7 Date of processing

 (yyyyddd)

 IDZ_ZAP_DATA Char 7 8 PTF number or other ZAP data

\\\ RESERVED \\\ Binary 15 3 Reserved, must be zeros

1 IDZ_RESIDENT Name 18 6 Name of the section to which

this IDR data applies

IDZ_RESIDENT_CHARS Binary 18 2 length of name in bytes

IDZ_RESIDENT_PTR Pointer 2ð 4 pointer to name string

Notes:

 1. Ignored on input to the binder.

 2. If the module is saved as a load module, dates are truncated

to 5 characters (YYDDD).

Figure 169. Format for AMASPZAP Identification Data

400 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

RLD Entry (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBRLD Binder RLD buffer, Version 1

 RLDH_BUFFER_ID Char ð 8 Buffer identifier “IEWBRLD ”

 RLDH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 RLDH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 RLDH_ENTRY_LENG Binary 16 4 Length of each entry

 RLDH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

RLDH_ENTRY_ORIGIN 32 First RLD entry

 RLD_ENTRY RLD entry

 RLD_TYPE Binary ð 1 Adcon Type

X'1ð' Branch type (V-con)

X'2ð' Non-branch type (A-con)

 X'3ð' Pseudoregister (Q-con)

 X'4ð' Cumulative Pseudo-

register Length (CXD)

2 RLD_STATUS Binary 1 1 Adcon Status

X'ð1' References an unresolved symbol

X'ð2' References a resolved symbol

X'ð3' References a nonrelocatable

 symbol

2 RLD_ADCON_BDY Binary 2 1 Adcon boundary status

X'ðð' Does not cross word boundary

X'ð1' Crosses a word boundary

X'ð2' Crosses a page boundary

 RLD_ADCON_DIRECTION Binary 3 1 Adcon relocation direction

X'ðð' Relocation is positive

X'ð1' Relocation is negative

 RLD_ADCON_LENG Binary 4 2 Length of the Adcon

\\\ RESERVED \\\ Binary 6 2 Reserved, must be zero

 RLD_SECTION_OFFSET Binary 8 4 Offset of the address constant

within the containing section

2 RLD_MODULE_OFFSET Binary 12 4 Offset of the address constant

within the module

\\\ RESERVED \\\ Binary 16 2 Reserved, must be zero

 RLD_TARGET Name 18 6 Name of the external symbol to

be used to compute the value

of the adcon (“R-Pointer”)

adcon (“R Pointer”)

RLD_TARGET_CHARS Binary 18 2 length of name in bytes

RLD_TARGET_PTR Pointer 2ð 4 pointer to name string

\\\ RESERVED \\\ Binary 24 2 Reserved, must be zero

1 RLD_RESIDENT Name 26 6 Name of the section to be used

to compute the location of

the adcon (“P-Pointer”).

RLD_RESIDENT_CHARS Binary 26 2 length of name in bytes

RLD_RESIDENT_PTR Pointer 28 4 pointer to name string

Notes:

 1. Ignored on input to the binder.

 2. Recalculated by the binder.

Figure 170. Format for RLD Entries

 Appendix J. Binder API Buffer Formats 401

 API Buffer Formats

Internal Symbol Table (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBSYM Binder Symbol buffer, Version 1

 SYMH_BUFFER_ID Char ð 8 Buffer identifier “IEWBSYM ”

 SYMH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 SYMH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 SYMH_ENTRY_LENGTH Binary 16 4 Length of each entry

 SYMH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

SYMH_ENTRY_ORIGIN 32 First SYM entry

 SYM_ENTRY SYM entry

SYM_CREATE_DATE Char ð 7 Date entry created (yyyyddd)

\\\ RESERVED \\\ Binary 7 1 Reserved, must be zeros

 SYM_DATA_CHARS Binary 8 2 Number of significant characters

 in SYM_DATA

SYM_DATA Char 1ð 8ð Not defined by the binder

1 SYM_RESIDENT Name 9ð 6 Name of the section to which

the symbol data applies

SYM_RESIDENT_CHARS Binary 9ð 2 length of name in bytes

SYM_RESIDENT_PTR Pointer 92 4 pointer to name string

Notes:

 1. Ignored on input to the binder.

Figure 171. Format for Symbol Table (SYM) entries

Text Data Buffer (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBTXT Binder Text buffer, Version 1

 TXTH_BUFFER_ID Char ð 8 Buffer identifier “IEWBTXT ”

 TXTH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 TXTH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 TXTH_ENTRY_LENG Binary 16 4 Length of entries (always 1)

 TXTH_ENTRY_COUNT Binary 2ð 4 Number of entries (bytes) in the

 buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, initialize to zeros

TXT_ARRAY Undef. 32 var Program Text (length varies from

1 to 2\\31-1 bytes, depending

on value in TXTH_ENTRY_COUNT)

Figure 172. Format for TXT Entries

402 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Binder Name List (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBBNL Binder Name List buffer, Ver 1

 BNLH_BUFFER_ID Char ð 8 Buffer identifier “IEWBBNL ”

 BNLH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 BNLH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 BNLH_ENTRY_LENG Binary 16 4 Length of each entry in the list

 BNLH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

BNLH_ENTRY_ORIGIN 32 First namelist entry

1 BNL_ENTRY Namelist entry

 BNL_NAME_CHARS Binary ð 2 Number of significant characters

in the class or section name

\\\ RESERVED \\\ Binary 2 2 Reserved, must be zeros

 BNL_NAME_PTR Pointer 4 4 Address of the class or section name

Notes:

 1. Output only.

Figure 173. Format for Binder Name List Entries

Extent List (Version 1)

 Field Field Off Leng Description

 Name Type set

IEWBXTL Module Extent List, Version 1

 XTLH_BUFFER_ID Char ð 8 Buffer identifier “IEWBXTL ”

 XTLH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 XTLH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 XTLH_ENTRY_LENG Binary 16 4 Length of each entry

 XTLH_ENTRY_COUNT Binary 2ð 4 Number of entries in the list

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

XTLH_ENTRY_ORIGIN 32 First extent list entry

1 XTL_ENTRY Extent List Entry

 XTL_LOAD_POINT Binary ð 4 Load point address for extent

2 XTL_EXTENT_LENG Binary 4 4 Length of extent

Notes:

 1. Valid for output only. There is normally only one entry. When the

binder is invoked under TSO, however, a second entry is provided for

the mini-CESD.

 2. The extent length includes the length of the module text plus other

binder-related data.

Figure 174. Format for Contents Extent List Entries

 Appendix J. Binder API Buffer Formats 403

 API Buffer Formats

Version 2 Buffer Formats
Version 2 buffers are those supported in DFSMS/MVS Version 1 Release 3.0
program management (PM2). VERSION=2 must be specified on the IEWBUFF
macro to obtain buffers in this format.

Version 2 buffers support new program management features introduced in PM2.
Most buffers have not changed except for the version number, but VERSION 2 is
supported by IEWBUFF for all classes, whether or not there is a format change.
Differences between versions 1 and 2 include:

� ESD and RLD buffers have changed significantly in support of multiple text
classes, a new binding algorithm and new address constants.

� A new binder-defined class, B_MAP, describes the logical structure of the
program object.

� External names can be up to 1024 bytes in length.

� @class-type class names are not supported in version 2 calls and buffers.

� For compatibility with PM1, the PM2 IEWBUFF macro produces the version 1
buffer formats, described previously, if VERSION=1 is specified or defaulted in
the macro invocation.

This section contains buffer layouts for each data class supported in PM2, in the
order shown in the following table:

Figure 175. Version 2 buffer formats. The table shows the sequence of buffer types in the
remainder of this section. The IEWBUFF TYPE parameter is shown in addition to the asso-
ciated class name.

CLASS TYPE= DESCRIPTION

B_ESD ESD External Symbol Dictionary

B_IDRB IDRB Binder Identification Record (IDR)

B_IDRL IDRL Language Processor Identification Data (IDR)

B_IDRU IDRU User Identification Data (IDR)

B_IDRZ IDRZ AMASPZAP Identification Data (IDR)

B_RLD RLD Relocation Directory Data

B_SYM SYM Internal Symbol Table

(varies) TEXT Program Text (instructions and data) and
ADATA

(none) NAME Binder Name List

(none) XTLST Extent List

B_MAP MAP Module Map

404 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

ESD Entry (Version 2)
Please note that the Version 2 ESD buffer has been significantly changed from the
Version 1 buffer.

 Field Field Off Leng Description

 Name Type set

IEWBESD Binder ESD buffer, Version 2

 ESDH_BUFFER_ID Char ð 8 Buffer identifier “IEWBESD ”

 ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 ESDH_VERSION Binary 12 1 Version identifier (Constant 2)

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 ESDH_ENTRY_LENG Binary 16 4 Length of each entry

 ESDH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved

ESDH_ENTRY_ORIGIN 32 First ESD entry

 ESD_ENTRY ESD entry

 ESD_TYPE Char ð 2 ESD Type

 ESD_TYPE_QUAL Char 2 2 ESD Type Qualifier

 ESD_NAME_SPACE Binary 4 1 Name Space for symbols

X'ðð' Class and section names (SD, ED)

X'ð1' Labels and references (LD, ER)

X'ð2' Pseudoregisters (PR, PD)

 X'ð3'-x'ð7' Reserved

 ESD_SCOPE Char 5 1 Scope of Name

 ' ' Not applicable

'S' Section (Types SD/private,ST,ET)

'M' Module (Types SD/CSECT,LD,

 ER/weak,CM,PR,DS,PD)

'L' Library (Type ER/strong)

 ESD_NAME Name 6 6 Symbol represented by ESD record

ESD_NAME_CHARS Binary 6 2 length of name in bytes

ESD_NAME_PTR Pointer 8 4 pointer to name string

\\\ RESERVED \\\ Char 12 2 Reserved

1 ESD_RES_SECTION Name 14 6 Name of containing section

ESD_RESIDENT_CHARS Binary 14 2 length of name in bytes

ESD_RESIDENT_PTR Pointer 16 4 pointer to name string

 ESD_LENG Binary 2ð 4 Length of defined element

(SD, ED, PD)

Figure 176 (Part 1 of 3). Format for ESD Entries

 Appendix J. Binder API Buffer Formats 405

 API Buffer Formats

 ESD_ALIGN Binary 24 1 Alignment specification from

 language processor. Indicates

Alignment of section contribution

within class segment (SD, ED, PD)

 X'ðð' Byte alignment

 X'ð1' Halfword

 X'ð2' Fullword

 X'ð3' Doubleword

 X'ðC' 4K page

 ESD_USABILITY Binary 25 1 Reusability of Section (SD)

 X'ðð' Unspecified

 X'ð1' Non-reusable

 X'ð2' Reusable

 X'ð3' Reentrant

 X'ð4' Refreshable

 ESD_AMODE Bit 26 1 Addressing Mode for Section or

label (SD, LD)

 X'ðð' Unspecified

 X'ð1' AMODE 24

 X'ð2' AMODE 31

X'ð3' AMODE ANY (24 or 31)

 X'ð4' AMODE MIN

 ESD_RMODE Bit 27 1 Residence Mode for class element

 (SD, ED)

 X'ð1' RMODE 24

X'ð3' RMODE ANY (24 or 31)

 ESD_RECORD_FMT Binary 28 2 Record format for class (ED)

 H'1' Byte stream

H'>1' Fixed length records

 Field Field Off Leng Description

 Name Type set

 ESD_LOAD_FLAGS Bit 3ð 1 Load Attributes (ED)

 1... Read-only

.1.. Do not load with module

 ..1. Moveable

 ...1 Shareable

 1... Deferred

.... .111 \\ Reserved \\

 ESD_BIND_FLAGS Bit 31 1 Bind Attributes

2 1... Binder generated (SD, ED, LD)

2 .1.. No class data available (ED)

2 ..1. Variable length records (ED)

...1 Descriptive data (not text) (ED)

.... 1111 \\ Reserved \\

 ESD_BIND_CNTL Bit 32 1 Bind control information

xx.. \\ Reserved \\

..xx Binding method (ED)

..ðð CAT (Catenated text)

..ð1 MRG (Merged parts)

..1x \\ Reserved \\

.... xxxx Text type (LD, PD, ER)

 ðððð Unspecified

 ððð1 Instructions

 ðð1ð Data

 xxxx Translator-defined (3-15)

\\\ RESERVED \\\ Char 33 1 Reserved

Figure 176 (Part 2 of 3). Format for ESD Entries

406 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

 ESD_XATTR_CLASS Name 34 6 Extended attributes class

 (LD, ER)

 ESD_XATTR_CLASS_CHARS

Binary 34 2 length of name in bytes

 ESD_XATTR_CLASS_PTR

Pointer 36 4 pointer to name string

 ESD_XATTR_OFFSET Binary 4ð 4 Extended attributes element offset

 (LD, ER)

2 ESD_SEGMENT Binary 44 2 Overlay segment number (SD)

2 ESD_REGION Binary 46 2 Overlay region number (SD)

 ESD_SIGNATURE Char 48 8 Interface signature

2 ESD_AUTOCALL Binary 56 1 Autocall specification (ER)

x... \\ Reserved \\

.1.. Entry in LPA. If ON, name is

 an alias.

..xx xxxx \\ Reserved \\

2 ESD_STATUS Bit 57 1 Resolution status (ER)

1... Symbol is resolved

.1.. Processed by autocall

 ..xx xxxx Reserved

2 ESD_TGT_SECTION Name 58 6 Target section (ER)

ESD_TARGET_CHARS Binary 58 2 length of name in bytes

ESD_TARGET_PTR Pointer 6ð 4 pointer to name string

\\\ RESERVED \\\ Char 64 2 Reserved

 ESD_RES_CLASS Name 66 6 Name of containing class

(LD, PD) or target class (ER)

 ESD_RES_CLASS_CHARS

Binary 66 2 length of name in bytes

 ESD_RES_CLASS_PTR

Pointer 68 4 pointer to name string

3 ESD_ELEM_OFFSET Binary 72 4 Offset within class element

 (LD, ER)

2 ESD_CLASS_OFFSET Binary 76 4 Offset within class segment

(ED, LD, PD, ER)

Notes:

 1. This entry is ignored on input to the binder.

 2. Recalculated by the binder.

 3. Calculated on the ED and ER records, required input to LD.

Figure 176 (Part 3 of 3). Format for ESD Entries

 Appendix J. Binder API Buffer Formats 407

 API Buffer Formats

Binder Identification Data (Version 2)
The Binder Identification Data has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBIDB Binder IDR Data, Version 2

 IDBH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDB ”

 IDBH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDBH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDBH_ENTRY_LENG Binary 16 4 Length of each entry

 IDBH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDBH_ENTRY_ORIGIN 32 First IDR entry

1 IDB_ENTRY Binder IDR Entry

IDB_BINDER_ID Char ð 1ð Binder product ID

 IDB_VERSION Char 1ð 2 DFSMS version

 IDB_RELEASE Char 12 2 DFSMS release

 IDB_DATE_BOUND Char 14 7 Date of binding (YYYYDDD)

 IDB_TIME_BOUND Char 21 6 Time of binding (HHMMSS)

\\\ RESERVED \\\ Binary 27 1 Reserved, must be zeros

 IDB_MODULE_SIZE Binary 28 4 Length of module text

IDB_CALLERID_CHARS Binary 32 2 Number of significant characters

 in IDB_CALLERID

 IDB_CALLERID Char 34 8ð Caller identification

\\\ RESERVED \\\ Binary 114 2 Reserved, must be zeros

Notes:

 1. Binder-generated.

Figure 177. Format for Binder Identification Data

408 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Language Processor Identification Data (Version 2)
The Language Processor Identification Data has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBIDL Language Processor Id Record,

 Version 2

 IDLH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDL ”

 IDLH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDLH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDLH_ENTRY_LENG Binary 16 4 Length of each entry

 IDLH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDLH_ENTRY_ORIGIN 32 First IDR entry

3 IDL_ENTRY Language IDR Entry

IDL_PID_ID Char ð 1ð Translator product ID

 IDL_VERSION Char 1ð 2 Version of the translator

 IDL_MOD_LEVEL Char 12 2 Modification level of translator

2 IDL_DATE_PROCESSED Char 14 7 Date compiled or assembled

 (yyyyddd)

\\\ RESERVED \\\ Binary 21 1 Reserved, must be zeros

1 IDL_SECTION_NAME Name 22 6 Name of owning section

IDL_RESIDENT_CHARS Binary 22 2 length of name in bytes

IDL_RESIDENT_PTR Pointer 24 4 pointer to name string

Notes:

 1. Ignored on input.

 2. If the module is saved in load module format, dates are

truncated to 5 characters (YYDDD).

 3. There normally is only one IDRL entry per section. However,

if the section was produced by a multistage compilation, there

is one IDRL record for each processor involved in the

generation of the object code.

Figure 178. Format for Language Processor Identification Data

 Appendix J. Binder API Buffer Formats 409

 API Buffer Formats

User Identification Data (Version 2)
The User Identification Data has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBIDU User Ident Data, Version 2

 IDUH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDU ”

 IDUH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDUH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDUH_ENTRY_LENG Binary 16 4 Length of each entry

 IDUH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDUH_ENTRY_ORIGIN 32 First IDR entry

IDU_ENTRY User IDR Entry

2 IDU_CREATE_DATE Char ð 7 Date the entry was created

 (yyyyddd)

\\\ RESERVED \\\ Binary 7 1 Reserved, must be zeros

 IDU_DATA_CHARS Binary 8 2 Number of significant characters

 in IDU_DATA

2 IDU_DATA Char 1ð 8ð Defined by the user

1 IDU_RESIDENT_NAME Name 9ð 6 Name of owning section

IDU_RESIDENT_CHARS Binary 9ð 2 length of name in bytes

IDU_RESIDENT_PTR Pointer 92 4 pointer to name string

Notes:

 1. Ignored on input

 2. If the module is saved in load module format, dates are

truncated to 5 characters (YYDDD) and the identification data to 4ð.

Figure 179. Format for User Identification Data

410 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

AMASPZAP Identification Data (Version 2)
The AMASPZAP Identification Data has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBIDZ AMASPZAP Ident Data, Version 2

 IDZH_BUFFER_ID Char ð 8 Buffer identifier “IEWBIDZ ”

 IDZH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 IDZH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 IDZH_ENTRY_LENG Binary 16 4 Length of each entry

 IDZH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

IDZH_ENTRY_ORIGIN 32 First IDR entry

IDZ_ENTRY Superzap IDR Entry

2 IDZ_DATE Char ð 7 Modification Date (yyyyddd)

 IDZ_ZAP_DATA Char 7 8 PTF number or other ZAP data

\\\ RESERVED \\\ Binary 15 3 Reserved, must be zeros

1 IDZ_RESIDENT_NAME Name 18 6 Name of owning section

IDZ_RESIDENT_CHARS Binary 18 2 length of name in bytes

IDZ_RESIDENT_PTR Pointer 2ð 4 pointer to name string

Notes:

 1. Ignored on input

 2. If the module is saved in load module format, dates are

truncated to 5 characters (YYDDD).

Figure 180. Format for AMASPZAP Identification Data

RLD Entry (Version 2)
The RLD Entry has been changed significantly from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBRLD Binder RLD buffer, Version 2

 RLDH_BUFFER_ID Char ð 8 Buffer identifier “IEWBRLD ”

 RLDH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 RLDH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 RLDH_ENTRY_LENG Binary 16 4 Length of each entry

 RLDH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

RLDH_ENTRY_ORIGIN 32 First RLD entry

Figure 181 (Part 1 of 2). Format for RLD Entries

 Appendix J. Binder API Buffer Formats 411

 API Buffer Formats

 Field Field Off Leng Description

 Name Type set

 RLD_ENTRY RLD entry

 RLD_TYPE Binary ð 1 Adcon type

X'1ð' Branch type (V-con)

X'2ð' Non-branch type (A-con)

X'21' Address of class segment

 X'3ð' Pseudoregister (Q-con)

X'4ð' Class or PRV length (CXD)

2 RLD_STATUS Binary 1 1 Adcon status

X'ð1' References an unresolved symbol

X'ð2' References a resolved symbol

X'ð3' References a nonrelocatable

 symbol

1 RLD_RES_IDENT Name 2 6 Name of section containing adcon

 (“P-pointer”)

RLD_RESIDENT_CHARS Binary 2 2 length of name in bytes

RLD_RESIDENT_PTR Pointer 4 4 pointer to name string

 RLD_ADCON_LENG Binary 8 2 Adcon length

 RLD_RES_CLASS Name 1ð 6 Name of class containing adcon

RLD_CLASS_CHARS Binary 1ð 2 length of name in bytes

 RLD_CLASS_PTR Pointer 12 4 pointer to name string

 RLD_ELEM_OFFSET Binary 16 4 Offset of the address constant

within the containing element

2 RLD_CLASS_OFFSET Binary 2ð 4 Offset of the address constant

within the class segment

2 RLD_ADCON_BDY Binary 24 1 Adcon boundary status

X'ðð' Does not cross word boundary

X'ð1' Crosses a word boundary

X'ð2' Crosses a page boundary

 RLD_BIND_FLAGS Bit 25 1 Bind attributes

1... Relocation sign (direction)

 'ð'=positive, '1'=negative

.1.. Set high order bit from

AMODE of target

..1. Scope of reference

 'ð'=internal, '1'=external

...1 High order bit of adcon

reset by binder

 RLD_XATTR_CLASS Name 26 6 Extended attributes class

 RLD_XATTR_CLASS_CHARS

Binary 26 2 length of name in bytes

 RLD_XATTR_CLASS_PTR

Pointer 28 4 pointer to name string

 RLD_XATTR_OFFSET Binary 32 4 Extended attributes element offset

 RLD_NAME_SPACE Binary 36 1 Name space of reference

X'ðð' Types 21, 4ð

X'ð1' External reference (1ð, 2ð)

X'ð2' Parts and pseudoregisters (3ð)

X'ð3'-X'ð7' Available to language products

\\\ RESERVED \\\ Binary 37 1 Reserved, must be zeros

 RLD_TARGET Name 38 6 Name of referenced symbol (for

external references and Q-cons)

or class (internal references

and class references and lengths)

 (“R-Pointer”)

RLD_TARGET_CHARS Binary 38 2 length of name in bytes

RLD_TARGET_PTR Pointer 4ð 4 pointer to name string

Notes:

 1. Ignored on input.

 2. Recalculated by the binder.

Figure 181 (Part 2 of 2). Format for RLD Entries

412 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Internal Symbol Table (Version 2)
The Internal Symbol Table has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBSYM Binder Symbol buffer,

 Version 2

 SYMH_BUFFER_ID Char ð 8 Buffer identifier “IEWBSYM ”

 SYMH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 SYMH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 SYMH_ENTRY_LENGTH Binary 16 4 Length of each entry

 SYMH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

SYMH_ENTRY_ORIGIN 32 First SYM entry

 SYM_ENTRY SYM entry

SYM_CREATE_DATE Char ð 7 Date entry created (yyyyddd)

\\\ RESERVED \\\ Binary 7 1 Reserved, must be zeros

 SYM_DATA_CHARS Binary 8 2 Number of significant characters

 in SYM_DATA

SYM_DATA Char 1ð 8ð Not defined by the binder

1 SYM_SECTION_NAME Name 9ð 6 Name of owning section

SYM_RESIDENT_CHARS Binary 9ð 2 length of name in bytes

SYM_RESIDENT_PTR Pointer 92 4 pointer to name string

Notes:

 1. Ignored on input.

Figure 182. Format for Symbol Table (SYM) entries

Text Data Buffer (Version 2)
The Text Buffer has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBTXT Binder Text buffer, Version 2

 TXTH_BUFFER_ID Char ð 8 Buffer identifier “IEWBTXT ”

 TXTH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 TXTH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 TXTH_ENTRY_LENG Binary 16 4 Length of entries (always 1)

 TXTH_ENTRY_COUNT Binary 2ð 4 Number of entries (bytes) in the

 buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, initialize to zeros

TXT_ARRAY Undef. 32 var Program Text (length varies from

1 to 2\\31-1 bytes, depending

on value in TXTH_ENTRY_COUNT)

Figure 183. Format for TXT Entries

 Appendix J. Binder API Buffer Formats 413

 API Buffer Formats

Binder Name List (Version 2)
The name list has changed from Version 1. Certain attributes, such as class length,
bind control flags and element count, have been added to the name entries
returned in the buffer.

 Field Field Off Leng Description

 Name Type set

IEWBBNL Binder Name List buffer, Ver 2

 BNLH_BUFFER_ID Char ð 8 Buffer identifier “IEWBBNL ”

 BNLH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 BNLH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 BNLH_ENTRY_LENG Binary 16 4 Length of each entry in the list

 BNLH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

\\\ RESERVED \\\ Binary 24 8 Reserved, initialize to zeros

BNLH_ENTRY_ORIGIN 32 First namelist entry

1 BNL_ENTRY Namelist Entry

 BNL_CLS_LENGTH Binary ð 4 Class segment length

BNL_BIND_FLAGS Bit 4 1 Bind Attributes

\\\ RESERVED \\\ Char 5 1 Reserved.

 BNL_NAME Name 6 6 Class or section name

BNL_NAME_CHARS Binary 6 2 length of name in bytes

BNL_NAME_PTR Pointer 8 4 pointer to name string

 BNL_ELEM_COUNT Binary 12 4 Number of elements in class or

 section

Notes:

 1. This entry is valid for output only.

Figure 184. Format for Binder Name List Entries

414 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Extent List (Version 2)
The Extent List has not changed from Version 1.

 Field Field Off Leng Description

 Name Type set

IEWBXTL Module Extent List, Version 2

 XTLH_BUFFER_ID Char ð 8 Buffer identifier “IEWBXTL ”

 XTLH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 XTLH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 XTLH_ENTRY_LENG Binary 16 4 Length of each entry

 XTLH_ENTRY_COUNT Binary 2ð 4 Number of entries in the list

\\\ RESERVED \\\ Binary 24 8 Reserved, initialize to zeros

XTLH_ENTRY_ORIGIN 32 First extent list entry

1 XTL_ENTRY Extent List Entry

 XTL_LOAD_POINT Binary ð 4 Load point address for extent

2 XTL_EXTENT_LENG Binary 4 4 Length of extent

Notes:

 1. This entry is valid for output only.

There is normally only one entry. When the binder is invoked

under TSO, however, a second entry is required for the mini-CESD.

 2. The extent length includes the length of the module text plus

other binder-related data.

Figure 185. Format for Contents Extent List Entries

 Appendix J. Binder API Buffer Formats 415

 API Buffer Formats

Module Map (Version 2)
The Module Map is new in Version 2.

 Field Field Off Leng Description

 Name Type set

IEWBMAP Module Map, Version 2

 MAPH_BUFFER_ID Char ð 8 Buffer identifier “IEWBMAP ”

 MAPH_BUFFER_LENG Binary 8 4 Length of the buffer,

including the header

 MAPH_VERSION Binary 12 1 Version identifier

\\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

 MAPH_ENTRY_LENG Binary 16 4 Length of each entry

 MAPH_ENTRY_COUNT Binary 2ð 4 Number of entries in the list

\\\ RESERVED \\\ Binary 24 8 Reserved, initialize to zeros

MAPH_ENTRY_ORIGIN 32 First map entry

1 MAP_ENTRY Map Entry

 MAP_NEXT Binary ð 4 Offset of next sibling entry

 MAP_TYPE Char 4 1 Type of map entry

 'M' Module

 'C' Class

 'O' Overlay segment

'S' Section within class

'P' Part within class

'L' Label within section

'X' Text extent within section

 or part

 'E' End-of-module

2 MAP_FLAGS Bit 5 1 Flags

1... Single extent implied (S)

.1.. Loadable text class (C)

..1. Class is executable text (C)

 ...x xxxx Reserved

2 MAP_NAME Name 6 6 Name of mapped element

Null (M, X, E)

region & segment (O)

MAP_NAME_CHARS Binary 6 2 length of name in bytes

MAP_NAME_PTR Pointer 8 4 pointer to name string

2 MAP_OFFSET Binary 12 4 Offset

class offset (O, S, P)

section offset (L, X)

zero (M, C)

2 MAP_QUANTITY Binary 16 4 Number of logical records/bytes

Sum of all classes (M)

 Zero (L)

2 MAP_NAME_SPACE Binary 2ð 1 Name space of label

X'ð1' External Labels (L)

 X'ð2' Pseudoregisters (P)

 X'ð3'-X'ð7' Reserved

\\\ RESERVED \\\ Binary 21 1 Reserved.

2 MAP_RECORD_FMT Binary 22 2 Class data format/record length

Zero (M, E)

Record length (C,O,S,L,P,X)

\\\ RESERVED \\\ Binary 24 8 Reserved.

Notes:

 1. This entry is valid for output only.

 2. Letters shown in parentheses refer to the map record type in which

the flag is valid.

Figure 186. Format for Module Map List Entries

416 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Migration to Version 2 Buffers
Support for multiple text classes and a logical module structure in which sections
are subdivided into classes requires some fundamental changes in the ESD. (See
“Understanding Binder Programming Concepts” on page 127 for a better under-
standing of module structure and content). At the highest level in the ESD hier-
archy is the Section Definition (SD entry), which assigns some attributes to the
section. At the next level is the Element Definition (ED entry), one for each class
requested in the section. ED records are new and need not be present for binder-
defined, non-text classes, such as ESD and IDR. Elements can contain either
labels (LD entries) or parts (PR entries), depending upon the binding method for
the class. Beginning with PM2, LD entries are required for all entry points: An SD
entry is no longer an implied entry into offset zero of that section.

Two PM1 data classes have been extended in PM2 in order to properly reflect the
multi-part program object. Class B_ESD has been extensively modified, with some
data moving from the SD record to lower level records, such as the ED and LD. In
addition, new data fields have been added to support future expansion. Class
B_RLD has also been modified for multi-part modules, although not as extensively
as the ESD. These changes must be considered when converting your program
from version 1 buffers and API calls to version 2.

If your program was designed for PM1 it should continue to work satisfactorily in
PM2, without change. Even if a version 2 or 3 program object is being processed,
the binder API converts the data to version 1 format before returning it in the buffer.

| However, if the version 2 or 3 program object exploits new function, it may contain
| data that cannot be converted. In this case you will receive an error message. In
| addition, FastData does not attempt to convert a PM2 program object to PM1

format. On input (that is, PUTD), conversion of format 1 buffer data to version 2 is
done by program management.

If you wish to convert your program to use the version 2 buffer formats and API
calls, then you must consider the following:

1. The number of ESD record types has been reduced to six by combining all
section-related records (for example, PC, CM, DS, ST, ET) into a single SD
record type. The type qualifier can be used to distinguish between the various
types of SD entries.

2. The ED record is new and is required for all text and compiler-defined classes,
including ADATA.

3. An LD record is required for each entry point into the section. External refer-
ences are not bound to SD entries in PM2.

4. PR and PD formats are identical. PRs, which represent a reference to a part or
pseudoregister in a merge class, are created by the language translator and
remain with the referencing section in the module. PD entries are always
created during binding and are stored in a special summary section. The gen-
erated PD entries are the true definers of these parts, and contain the correct
class offset, length and alignment.

5. Offsets relative to the start of the module or section in version 1 buffers have
been replaced by class and element offsets, respectively, in version 2.

 Appendix J. Binder API Buffer Formats 417

 API Buffer Formats

6. Extended attributes information can be identified in certain ESD and RLD
record types. Those data items are stored in the program object, but not proc-
essed in any way by the binder.

7. Name space has been added to both ESD and RLD records, since program
symbols can be defined and referenced in multiple name spaces.

8. A new RLD type is defined for address constants which are to be set to the
virtual address of a class.

The following tables show the correspondence between data elements in the two
versions of the ESD and RLD buffers. Format codes shown have the following
meaning:

Bnn Bit string, width in bits
Cnn Character data, width in bytes
Fnn Fixed point (integer) data, width in bits.
N06 Name, consisting of halfword name length followed by pointer to string.

The IEWBUFF macro generates separate DS entries for the name length
and pointer.

PTR 4-byte pointer

New data elements are normally set to zero when processing a PM1 module. This
is not true if the new value is determined from other data present in the record.

Field Correspondence for ESD records
Figure 187 (Page 1 of 2). Comparison of new and old ESD formats. New and old ESD
formats are compared, field-by-field. Numbers in the note column refer to notes in the con-
version list which follows the table. An “=” indicates that the field name, format, contents and
meaning are identical.

Version 2 Fields Version 1 Fields Ref

ESD_TYPE C02 ESD_TYPE C02 1

ESD_TYPE_QUAL C02 ESD_TYPE C02 2

ESD_NAME_SPACE F08 (none) 3

ESD_SCOPE C01 ESD_SCOPE C01 =

ESD_NAME N06 ESD_NAME N06 =

ESD_RES_SECTION N06 ESD_RESIDENT N06 =

ESD_LENG F31 ESD_LENG F31 =

ESD_ALIGN F08 ESD_ALIGN F08 4

ESD_USABILITY B08 ESD_USABILITY B08 4

ESD_AMODE B08 ESD_AMODE B08 4

ESD_RMODE B08 ESD_RMODE B08 4

ESD_RECORD_FMT F15 (none) 5

ESD_LOAD_FLAGS B08 (none) 6

 RO B01 STORAGE B08 7

 NL B01 (none) 8

 MOVE B01 (none) 9

 SHR B01 (none) 9

ESD_BIND_FLAGS B08 (none) 10

418 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Figure 187 (Page 2 of 2). Comparison of new and old ESD formats. New and old ESD
formats are compared, field-by-field. Numbers in the note column refer to notes in the con-
version list which follows the table. An “=” indicates that the field name, format, contents and
meaning are identical.

Version 2 Fields Version 1 Fields Ref

 GEND B01 (none) 11

 NO_CLASS B01 (none) 12

 VL B01 (none) 13

 DESCR B01 (none) 14

ESD_BIND_CNTL B08 (none) 15

 METH B02 (none) 15

 TEXT_TYPE B04 TEXT C01 15

ESD_XATTR_CLASS N06 (none) 16

ESD_XATTR_OFFSET F31 (none) 16

ESD_SEGMENT F15 ESD_SEGMENT F15 =

ESD_REGION F15 ESD_REGION F15 =

ESD_SIGNATURE C08 (none) 17

ESD_AUTOCALL F08 ESD_AUTOCALL F08 =

ESD_STATUS B08 ESD_STATUS B08 =

ESD_TGT_SECTION N06 ESD_TARGET N06 =

ESD_RES_CLASS N06 (none) 18

ESD_ELEM_OFFSET F31 ESD_SECTION_OFFSET PTR 19

ESD_CLASS_OFFSET F31 ESD_MODULE_OFFSET PTR 19

ESD Conversion Notes (and PM1-PM2 differences)
The numbered items in the following list correspond to the numbers in the Ref
column in the above table.

1. ESD_TYPE in PM2 supports only six record types: SD, ED, LD, PD, PR and
ER. The PM1 ESD type values have been moved to the ESD_TYPE_QUAL
field.

2. ESD_TYPE_QUAL contains the PM1 ESD type value, and is used to identify
special behavioral characteristics. Routines which process all sections in the
same way can now refer to ESD_TYPE only; those which must discriminate
between the various section types must also look at the type qualifier.

3. ESD_NAME_SPACE is a new data element in PM2. It replaces some logic in
bind processing and, as a result, gives more binding flexibility to the languages.
For binder purposes, a name space is a set of symbols consisting of characters
from the binder's character set and contains no duplicate definitions. In the
case of a PM1 program object, the buffer is set to one of the following values:

� 0 - SD and ED entries.
� 1 - LD and ER entries, and PD/PR entries for external data items.
� 2 - PD/PR entries representing pseudoregisters and other parts

 Appendix J. Binder API Buffer Formats 419

 API Buffer Formats

4. Alignment, Usability, RMODE and AMODE are unchanged from PM1 values,
except that some have been moved to lower level ESD structures:

� Alignment to ED. PR alignment comes from old PR record.
� AMODE to LD. Each external label can have its own AMODE, but can be

overridden by a referencing ALIAS specification.
� RMODE to ED. This is necessary for multi-part loading.

All remain as valid SD fields for compatibility, although they are copied to the
other record types prior to binding.

5. ESD_RECORD_FMT is a new data element in PM2. It is used only on the ED
record type, and indicates the structure and record length of the data contained
in the class being described by the ED record. As such it becomes a class
attribute, against which the record length field in any PUTD buffers for that
class is validated.

6. ESD_LOAD_FLAGS is a new data element in PM2. Its purpose is to enable
multi-class loading by the program management Loader, and together with
RMODE contains the various attributes the loader needs for proper placement
of the class segment in storage. Load flags are extracted from input of all
sources.

7. The PM1 format defines ESD_STORAGE value x'10' as representing read-only
storage. This field is reduced to a single load flag in PM2, RO, where b'1'
means read-only.

8. Loader attribute NL, if set, indicates that the class segment is not to be loaded
with the module.

9. These are new PM2 data elements.

10. Bind flags ESD_BIND_FLAGS are new PM2 data elements. In a PM2 program
object, they represent binding attributes which are derived from other sources
during binding. They control the binding and output processes of the binder.
Four flags have been defined, GEND, NO_CLASS, VL and DESCR.

11. GEND indicates that the defined entity has been generated by the binder. It is
used with:

� SD records for SEGTABs and ENTABs and special sections (x'00000001'
and x'00000003').

� ED records for B_IDRB and B_MAP classes.
� LD records created by the binder for each CSECT.
� PD summary records created by the binder for parts.

12. NO_CLASS indicates that there is no initial data in this class. The element is
filled with the fill byte, if specified, during bind and/or load.

13. VL indicates that the byte stream data consists of varying length records, each
preceded by a halfword length field.

14. DESCR indicates whether the class contains text or descriptive data. Text is
byte stream data which can contain or be the target of address constants.
Descriptive data is everything else. Both text and descriptive data could be
either loaded or not.

15. ESD_BIND_CNTL contains two data elements needed to control the binding
process. Unlike ESD_BIND_FLAGS, this data is provided by the language
translator. This field consists of two sub-elements, METH and TEXT_TYPE.

420 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

� Binder control field METH identifies the binding method to be used on the
class. It is specified only on the ED record, and should be set to B'00' on
other record types for PM2 program objects.

� The field ESD_TEXT has been reduced to a half-byte field under the name
TEXT_TYPE. The data is meaningful only for external references, on the
ER and LD records, and permits cursory interface matching during binding.
The values represent the type of text which is defined by the label (LD) or
expected by the reference (ER) and are:

– 0 - Unspecified. If either the LD and/or ER have this value, the inter-
face is accepted by the binder.

– 1 - Data. For data references.
– 2 - Instructions. For calls.
– 3-15 - Undefined value for special translator usage.

16. These are new PM2 data elements. ESD_XATTR_CLASS and
ESD_XATTR_OFFSET locate extended attributes for a label (LD) or external
reference (ER). On SD, ED, PR and PD records these fields are meaningless
and are set to zero.

IBM language products are not currently using signatures, extended attributes
or interface matching.

17. SIGNATURE is a new data element in PM2. It allows quick interface matching
between reference and definition during the binding process, avoiding the invo-
cation of a time-consuming interface validation exit if the signatures match or
are not specified.

IBM language products are not currently using signatures, extended attributes
or interface matching.

18. This is a new PM2 data element. For a PM2 program object, CLASS is dis-
played on all LD, PD and ER records and should be set to zero on SD and ED.
For LD, PD and ER records, it is the data class containing the label or part.

19. Change of field names, section --> element, module --> class.

 Appendix J. Binder API Buffer Formats 421

 API Buffer Formats

Figure 188. ESD element usage. Table shows which elements are displayed, by ESD
record type. For usage of sub-elements, refer to individual record type formats.

Element Name SD ED LD PR ER

ESD_NAME R R R R R

ESD_RES_SECT O O O O O

ESD_TARGET C

ESD_RES_CLASS R R C

ESD_XATTR_CLASS O O

ESD_XATTR_OFFSET O O

ESD_LENG R R

ESD_ELEM_OFFSET R C

ESD_CLASS_OFFSET C C C C

ESD_REGION C

ESD_SEGMENT C

ESD_TYPE R R R R R

ESD_TYPE_QUAL R O

ESD_SCOPE R R

ESD_NAME_SPACE R C C R

ESD_RECORD_FMT R

ESD_LOAD_FLAGS R

ESD_BIND_FLAGS C R C

ESD_BIND_CNTL R R R

ESD_ALIGN O R R

ESD_USABILITY R

ESD_RMODE R

ESD_AMODE O R

ESD_AUTOCALL C

ESD_STATUS C

ESD_SIGNATURE C

Note: R = Required on input, displayed on output; O = Optional on input, displayed on
output; C = Recalculated by Bind.

422 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

Field Correspondence for RLD Records
Figure 189. Comparison of new and old RLD formats. New and old workmod RLD formats
are compared, field-by-field. Numbers in the notes column refer to notes in the conversion
list which follows the table. An “=” in this column indicates that the two formats are identical
in name, format, content and meaning.

Version 2 Fields Version 1 Fields Ref

RLD_TYPE F08 RLD_TYPE F08 1

RLD_STATUS F08 RLD_STATUS F08 =

RLD_RES_IDENT N06 RLD_RESIDENT N06 =

RLD_ADCON_LENG F15 RLD_ADCON_LENG F15 =

RLD_RES_CLASS N06 (none) 2

RLD_ELEM_OFFSET F31 RLD_SECTION_OFFSET F31 3

RLD_CLASS_OFFSET F31 RLD_MODULE_ OFFSET F31 3

RLD_ADCON_BDY F08 RLD_ADCON_BDY F08 =

RLD_BIND_FLAGS B08 (none) 4

 DIRECTION B01 RLD_ADCON_ DIRECTION F08 5

 HOBSET B01 (none) 4

 INT_EXT B01 (none) 4

 HOBCHG B01 (none) 4

RLD_XATTR_CLASS N06 (none) 4

RLD_XATTR_OFFSET F31 (none) 4

RLD_NAME_SPACE F08 (none) 6

RLD_TARGET N06 RLD_TARGET N06 =

RLD Conversion Notes (and PM1-PM2 differences)
The numbered items in the following list correspond to the numbers in the Ref
column in the above table.

1. This is equivalent to the PM1 field RLD_TYPE. A new RLD type added in
PM2, type 21, which is used to address the origin of any loaded class segment.

2. Name of the class containing the adcon. For PM1 program objects,
RLD_CLASS is set to B_TEXT.

3. Module and section offset have been replaced with the offset relative to the
start of the class and element, respectively.

4. New PM2 field. Is initialized to zero unless otherwise noted.

5. The 8-bit PM1 direction flag is reduced to a single bind flag in PM2.

6. For A- and V-type adcons (types 10 & 20), RLD_NAME_SPACE=1. For Q-type
adcons (type 30), RLD_NAME_SPACE=2. Otherwise, RLD_NAME_SPACE=0.

 Appendix J. Binder API Buffer Formats 423

 API Buffer Formats

| Version 3 Buffer Formats
| Version 3 buffers are those supported in DFSMS/MVS Version 1 Release 4.0
| program management (PM3). VERSION=3 must be specified on the IEWBUFF
| macro to obtain buffers in this format.

| Version 3 buffers support new program management features introduced in PM3.
| Most buffers have not changed except for the version number, but VERSION 3 is
| supported by IEWBUFF for all classes, whether or not there is a format change.
| Differences between versions 2 and 3 include:

| � ESD buffer has changed slightly to support DLLs and C/C++ semantics.

| � RLD buffer has changed slightly to support RLDs resident in parts.

| � A new binder-defined class, B_PARTINIT, has a new buffer format named
| IEWBPTI.

| � For compatibility with PM1, the PM2 & PM3 IEWBUFF macro produces the
| version 1 buffer formats, described previously, if VERSION=1 is specified or
| defaulted in the macro invocation.

| This section contains the buffer layouts that have changed or have been added in
| version 3. All the other buffer formats will be the same for version 3 as in version 2.

| ESD Entry (Version 3)
| Please note that the Version 3 ESD buffer has been slightly changed from the
| Version 2 buffer.

424 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

| Field Field Off Leng Description

| Name Type set

| IEWBESD Binder ESD buffer, Version 3

| ESDH_BUFFER_ID Char ð 8 Buffer identifier “IEWBESD ”

| ESDH_BUFFER_LENG Binary 8 4 Length of the buffer,

| including the header

| ESDH_VERSION Binary 12 1 Version identifier (Constant 2)

| \\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

| ESDH_ENTRY_LENG Binary 16 4 Length of each entry

| ESDH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

| \\\ RESERVED \\\ Binary 24 8 Reserved

| ESDH_ENTRY_ORIGIN 32 First ESD entry

| ESD_ENTRY ESD entry

| ESD_TYPE Char ð 2 ESD Type

| ESD_TYPE_QUAL Char 2 2 ESD Type Qualifier

| ESD_NAME_SPACE Binary 4 1 Name Space for symbols

| X'ðð' Class and section names (SD, ED)

| X'ð1' Labels and references (LD, ER)

| X'ð2' Pseudoregisters (PR, PD)

| X'ð3' Parts(PR, PD) in writeable static

| X'ð4'-x'ð7' Reserved

| ESD_SCOPE Char 5 1 Scope of Name

| ' ' Not applicable

| 'S' Section (Types SD/private,ST,ET)

| 'M' Module (Types SD/CSECT,LD,

| ER/weak,CM,PR,DS,PD)

| 'L' Library (Type ER/strong)

| 'X' Symbol may be IMPORTED or

| EXPORTED.

| ESD_NAME Name 6 6 Symbol represented by ESD record

| ESD_NAME_CHARS Binary 6 2 length of name in bytes

| ESD_NAME_PTR Pointer 8 4 pointer to name string

| ESD_SYMBOL_ATTR Binary 12 1 Symbol attributes

| 1... ON = strong ref or def.

| OFF = weak ref or def.

| .1.. ON = this symbol may be renamed

| ..1. ON = Symbol is a descriptor

| ...1 1111 \\ Reserved \\

| \\\ RESERVED \\\ Char 13 1 Reserved

| 1 ESD_RES_SECTION Name 14 6 Name of containing section

| ESD_RESIDENT_CHARS Binary 14 2 length of name in bytes

| ESD_RESIDENT_PTR Pointer 16 4 pointer to name string

| ESD_LENG Binary 2ð 4 Length of defined element

| (SD, ED, PD)

| Figure 190 (Part 1 of 3). Format for ESD Entries

 Appendix J. Binder API Buffer Formats 425

 API Buffer Formats

| ESD_ALIGN Binary 24 1 Alignment specification from

| language processor. Indicates

| Alignment of section contribution

| within class segment (SD, ED, PD)

| X'ðð' Byte alignment

| X'ð1' Halfword

| X'ð2' Fullword

| X'ð3' Doubleword

| X'ðC' 4K page

| ESD_USABILITY Binary 25 1 Reusability of Section (SD)

| X'ðð' Unspecified

| X'ð1' Non-reusable

| X'ð2' Reusable

| X'ð3' Reentrant

| X'ð4' Refreshable

| ESD_AMODE Bit 26 1 Addressing Mode for Section or

| label (SD, LD)

| X'ðð' Unspecified

| X'ð1' AMODE 24

| X'ð2' AMODE 31

| X'ð3' AMODE ANY (24 or 31)

| X'ð4' AMODE MIN

| ESD_RMODE Bit 27 1 Residence Mode for class element

| (SD, ED)

| X'ð1' RMODE 24

| X'ð3' RMODE ANY (24 or 31)

| ESD_RECORD_FMT Binary 28 2 Record format for class (ED)

| H'1' Byte stream

| H'>1' Fixed length records

| Field Field Off Leng Description

| Name Type set

| ESD_LOAD_FLAGS Bit 3ð 1 Load Attributes (ED)

| 1... Read-only

| .1.. Do not load with module

| ..1. Moveable

| ...1 Shareable

| 1111 \\ Reserved \\

| ESD_BIND_FLAGS Bit 31 1 Bind Attributes

| 2 1... Binder generated (SD, ED, LD)

| 2 .1.. No class data available (ED)

| 2 ..1. Variable length records (ED)

| ...1 Descriptive data (not text) (ED)

| 1111 \\ Reserved \\

| ESD_BIND_CNTL Bit 32 1 Bind control information

| xx.. \\ Reserved \\

| ..xx Binding method (ED)

| ..ðð CAT (Catenated text)

| ..ð1 MRG (Merged parts)

| ..1x \\ Reserved \\

| xxxx Text type (LD, PD, ER)

| ðððð Unspecified

| ððð1 Instructions

| ðð1ð Data

| xxxx Translator-defined (3-15)

| \\\ RESERVED \\\ Char 33 1 Reserved

| Figure 190 (Part 2 of 3). Format for ESD Entries

426 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

| ESD_XATTR_CLASS Name 34 6 Extended attributes class

| (LD, ER)

| ESD_XATTR_CLASS_CHARS

| Binary 34 2 length of name in bytes

| ESD_XATTR_CLASS_PTR

| Pointer 36 4 pointer to name string

| ESD_XATTR_OFFSET Binary 4ð 4 Extended attributes element offset

| (LD, ER)

| 2 ESD_SEGMENT Binary 44 2 Overlay segment number (SD)

| 2 ESD_REGION Binary 46 2 Overlay region number (SD)

| ESD_SIGNATURE Char 48 8 Interface signature

| 2 ESD_AUTOCALL Binary 56 1 Autocall specification (ER)

| x... \\ Reserved \\

| .1.. Entry in LPA. If ON, name is

| an alias.

| ..xx xxxx \\ Reserved \\

| 2 ESD_STATUS Bit 57 1 Resolution status (ER)

| 1... Symbol is resolved

| .1.. Processed by autocall

| ..xx xxxx Reserved

| 2 ESD_TGT_SECTION Name 58 6 Target section (ER)

| ESD_TARGET_CHARS Binary 58 2 length of name in bytes

| ESD_TARGET_PTR Pointer 6ð 4 pointer to name string

| \\\ RESERVED \\\ Char 64 2 Reserved

| ESD_RES_CLASS Name 66 6 Name of containing class

| (LD, PD) or target class (ER)

| ESD_RES_CLASS_CHARS

| Binary 66 2 length of name in bytes

| ESD_RES_CLASS_PTR

| Pointer 68 4 pointer to name string

| 3 ESD_ELEM_OFFSET Binary 72 4 Offset within class element

| (LD, ER)

| 2 ESD_CLASS_OFFSET Binary 76 4 Offset within class segment

| (ED, LD, PD, ER)

| \\\ RESERVED \\\ Char 8ð 12 Reserved

| ESD_PRIORITY Binary 92 4 Binding priority

| Notes:

| 1. This entry is ignored on input to the binder.

| 2. Recalculated by the binder.

| 3. Calculated on the ED and ER records, required input to LD.

| Figure 190 (Part 3 of 3). Format for ESD Entries

| RLD Entry (Version 3)
| The RLD Entry has been changed slightly from Version 2.

| Field Field Off Leng Description

| Name Type set

| IEWBRLD Binder RLD buffer, Version 2

| RLDH_BUFFER_ID Char ð 8 Buffer identifier “IEWBRLD ”

| RLDH_BUFFER_LENG Binary 8 4 Length of the buffer,

| including the header

| RLDH_VERSION Binary 12 1 Version identifier

| \\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

| RLDH_ENTRY_LENG Binary 16 4 Length of each entry

| RLDH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

| \\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

| RLDH_ENTRY_ORIGIN 32 First RLD entry

| Figure 191 (Part 1 of 3). Format for RLD Entries

 Appendix J. Binder API Buffer Formats 427

 API Buffer Formats

| Field Field Off Leng Description

| Name Type set

| RLD_ENTRY RLD entry

| RLD_TYPE Binary ð 1 Adcon type

| X'1ð' Branch type (V-con)

| X'2ð' Non-branch type (A-con)

| X'21' Address of class segment

| X'3ð' Pseudoregister (Q-con)

| X'4ð' Class or PRV length (CXD)

| 2 RLD_STATUS Binary 1 1 Adcon status

| X'ð1' References an unresolved symbol

| X'ð2' References a resolved symbol

| X'ð3' References a nonrelocatable

| symbol

| 1 RLD_RES_IDENT Name 2 6 Name of section containing adcon

| (“P-pointer”)

| RLD_RESIDENT_CHARS Binary 2 2 length of name in bytes

| RLD_RESIDENT_PTR Pointer 4 4 pointer to name string

| RLD_ADCON_LENG Binary 8 2 Adcon length

| RLD_RES_CLASS Name 1ð 6 Name of class containing adcon

| RLD_CLASS_CHARS Binary 1ð 2 length of name in bytes

| RLD_CLASS_PTR Pointer 12 4 pointer to name string

| RLD_ELEM_OFFSET Binary 16 4 Offset of the address constant

| within the containing element

| 2 RLD_CLASS_OFFSET Binary 2ð 4 Offset of the address constant

| within the class segment

| 2 RLD_ADCON_BDY Binary 24 1 Adcon boundary status

| X'ðð' Does not cross word boundary

| X'ð1' Crosses a word boundary

| X'ð2' Crosses a page boundary

| RLD_BIND_FLAGS Bit 25 1 Bind attributes

| 1... Set high order bit from

| AMODE of target

| .1.. Relocation sign (direction)

| 'ð'=positive, '1'=negative

| ..1. Scope of reference

| 'ð'=internal, '1'=external

| ...1 High order bit of adcon

| reset by binder

| RLD_XATTR_CLASS Name 26 6 Extended attributes class

| RLD_XATTR_CLASS_CHARS

| Binary 26 2 length of name in bytes

| RLD_XATTR_CLASS_PTR

| Pointer 28 4 pointer to name string

| RLD_XATTR_OFFSET Binary 32 4 Extended attributes element offset

| RLD_NAME_SPACE Binary 36 1 Name space of reference

| X'ðð' Types 21, 4ð

| X'ð1' External reference (1ð, 2ð)

| X'ð2' Pseudoregisters (3ð)

| X'ð3' Parts (PR,PD) in writeable static

| X'ð4'-X'ð7' Available to language products

| \\\ RESERVED \\\ Binary 37 1 Reserved, must be zeros

| Figure 191 (Part 2 of 3). Format for RLD Entries

428 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

| RLD_TARGET Name 38 6 Name of referenced symbol (for

| external references and Q-cons)

| or class (internal references

| and class references and lengths)

| (“R-Pointer”)

| RLD_TARGET_CHARS Binary 38 2 length of name in bytes

| RLD_TARGET_PTR Pointer 4ð 4 pointer to name string

| \\\ RESERVED \\\ Binary 44 2 Reserved, must be zeros

| RLD_RES_PART Name 46 6 Name of resident part.

| RLD_RES_PART_CHARS Binary 46 2 length of name in bytes

| RLD_RES_PART_PTR Pointer 48 4 pointer to name string

| Notes:

| 1. Ignored on input.

| 2. Recalculated by the binder.

| Figure 191 (Part 3 of 3). Format for RLD Entries

 Appendix J. Binder API Buffer Formats 429

 API Buffer Formats

| PARTINIT Entry (Version 3)
| The PARTINIT Entry has been added for Version 3.

| Field Field Off Leng Description

| Name Type set

| IEWBPTI Binder PARTINIT buffer, Version 3

| PTIH_BUFFER_ID Char ð 8 Buffer identifier “IEWBPTI ”

| PTIH_BUFFER_LENG Binary 8 4 Length of the buffer,

| including the header

| PTIH_VERSION Binary 12 1 Version identifier

| \\\ RESERVED \\\ Binary 13 3 Reserved, must be zeros

| PTIH_ENTRY_LENG Binary 16 4 Length of each entry

| PTIH_ENTRY_COUNT Binary 2ð 4 Number of entries in the buffer

| \\\ RESERVED \\\ Binary 24 8 Reserved, must be zeros

| PTIH_ENTRY_ORIGIN 32 First PARTINIT entry

| PTI_ENTRY PARTINIT entry

| PTI_DATA_LENG Binary ð 2 Record length

| PTI_DATA_REP Binary 2 2 Repetition factor

| \\\ RESERVED \\\ Binary 4 2 Reserved, must be zeros

| PTI_DATA_CLASS_LL Binary 6 2 Class name length

| PTI_DATA_CLASS_PTR Pointer 8 4 Pointer to class name

| PTI_DATA_NAME_LL Binary 12 2 Part Initializer name length

| PTI_DATA_NAME_PTR Pointer 14 4 Pointer to part initializer name

| PTI_DATA_OFFSET Pointer 18 4 Placement of data within part

| Figure 192. Format for PARTINIT Entries

430 DFSMS/MVS V1R4 Program Management

 API Buffer Formats

| Migration to Version 3 Buffers
| Version 3 buffers are very similar to version 2 buffers. The change from version 2
| to version 3 is much smaller than the change from version 1 to version 2. There-
| fore, if you are currently using version 1 buffers, see the discussion in “Migration to
| Version 2 Buffers” on page 417 before reading this section.

| If your program was designed for PM2 format it should continue to work without
| change. FastData will convert a PM3 program object to PM2 (but not to PM1).

| Part Initializers
| Part Initializer buffers are not supported in version 1 or 2. Part initializers contain
| text data to be placed in parts (defined by PR or PD ESD records) in merge
| classes.

| ESD Conversion Notes
| The ESD records contain the following new fields:

| 1. ESD_SYMBOL_ATTR

| a. strong or weak
| if definition - a strong definition will override a weak definition. multiple
| weak definitions are allowed.
| if reference - unresolved weak reference will not result in an error message.

| b. renameable symbol is eligible for renaming under control of UPCASE
| option, RENAME control statements, and C runtime library renaming algo-
| rithms.

| c. descriptor symbol represents a linkage descriptor.

| 2. ESD_LOAD_FLAGS is a new attribute flag (DEFER) to indicate a deferred load
| class has been defined. This bit should be interpreted in conjunction with the
| do-not-load flag (NL) as follows:

| NL DEFER MEANING

| --- ----- -------

| ð ð INITIAL LOAD

| ð 1 DEFERRED LOAD

| 1 ð NO LOAD

| 3. The ESD_PRIORITY field may be used to order the PRs in a merge class.
| The lowest priority parts in the output module will be assigned the smallest
| offset.

| RLD Conversion Notes
| RLD_RES_PART may be set to specify the name of the resident part for an RLD
| which describes an adcon within a part. If RLD_RES_PART is set, than
| RLD_ELEM_OFFSET must be interpreted as the offset of the adcon from the
| beginning of the part. The part name must match the name on a PR or PD type
| ESD record.

 Appendix J. Binder API Buffer Formats 431

 API Buffer Formats

432 DFSMS/MVS V1R4 Program Management

 Data Areas

 Appendix K. Data Areas

This appendix contains General-use Programming Interface and Associated Guid-
ance Information.

This appendix describes formats of the partitioned data set (PDS) directory entry.
The first format shows the PDS directory entry format on entry to the STOW macro.
The next format shows the PDS directory entry format that is returned by the BLDL
macro.

Also included in this appendix is the format of the PDSE entry returned by the
DESERV macro.

PDS Directory Entry Format on Entry to STOW
The following describes the format of a partitioned data set (PDS) directory entry.
It is returned in simulated 256-byte blocks when BSAM or QSAM is used to read a
PDSE directory entry This format shows the control block on entry to the STOW
macro. You can use the IHAPDS macro to map this control block.

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

0 (0) CHARACTER 8 PDS2NAME - LOAD MODULE MEMBER NAME OR
ALIAS

8 (8) CHARACTER 3 PDS2TTRP - TTR OF FIRST BLOCK OF NAMED
MEMBER

11 (B) BITSTRING 1 PDS2INDC - INDICATOR BYTE

 1... PDS2ALIS "BIT0"- NAME IN THE FIRST FIELD IS
AN ALIAS

 .11. PDS2NTTR "BIT1+ BIT2"- NUMBER OF TTR'S IN
THE USER DATA FIELD

 ...1 1111 PDS2LUSR "BIT3+ BIT4+ BIT5+ BIT6+ BIT7" -
LENGTH OF USER DATA FIELD IN
HALF WORDS

12 (C) CHARACTER 1 PDS2USRD (0) - START OF VARIABLE LENGTH USER
DATA FIELD

12 (C) CHARACTER 3 PDS2TTRT - TTR OF FIRST BLOCK OF TEXT

15 (F) CHARACTER 1 PDS2ZERO - ZERO

16 (10) CHARACTER 3 PDS2TTRN - TTR OF NOTE LIST OR
SCATTER/TRANSLATION TABLE. USED
FOR MODULES IN SCATTER LOAD
FORMAT OR OVERLAY STRUCTURE
ONLY.

19 (13) SIGNED 1 PDS2NL - NUMBER OF ENTRIES IN NOTE LIST
FOR MODULES IN OVERLAY STRUC-
TURE

20 (14) BITSTRING 2 PDS2ATR (0) - TWO-BYTE MODULE ATTRIBUTE
FIELD

 Copyright IBM Corp. 1991, 1997 433

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

20 (14) BITSTRING 1 PDS2ATR1 - FIRST BYTE OF MODULE ATTRIBUTE
FIELD

 1... PDS2RENT "BIT0"- REENTERABLE

 .1.. PDS2REUS "BIT1"- REUSABLE

 ..1. PDS2OVLY "BIT2"- IN OVERLAY STRUCTURE

 ...1 PDS2TEST "BIT3"- MODULE TO BE TESTED -
TESTRAN

 1... PDS2LOAD "BIT4"- ONLY LOADABLE

 1.. PDS2SCTR "BIT5"- SCATTER FORMAT

 1. PDS2EXEC "BIT6"- EXECUTABLE

 1 PDS21BLK "BIT7"- IF ZERO, MODULE CONTAINS
MULTIPLE RECORDS WITH AT LEAST
ONE BLOCK OF TEXT. --- IF ONE,
MODULE CONTAINS NO RLD ITEMS
AND ONLY ONE BLOCK OF TEXT.

21 (15) BITSTRING 1 PDS2ATR2 - SECOND BYTE OF MODULE ATTRI-
BUTE FIELD

 1... PDS2FLVL "BIT0"- IF ZERO, MODULE CAN BE
PROCESSED BY ALL LEVELS OF
LINKAGE EDITOR. --- IF ONE, MODULE
CAN BE PROCESSED ONLY BY F
LEVEL OF LINKAGE EDITOR.

 .1.. PDS2ORG0 "BIT1"- LINKAGE EDITOR ASSIGNED
ORIGIN OF FIRST BLOCK OF TEXT IS
ZERO.

 ..1. PDS2EP0 "BIT2"- ENTRY POINT ASSIGNED BY
LINKAGE EDITOR IS ZERO

 ...1 PDS2NRLD "BIT3"- MODULE CONTAINS NO RLD
ITEMS

 1... PDS2NREP "BIT4"- MODULE CANNOT BE REPROC-
ESSED BY LINKAGE EDITOR

 1.. PDS2TSTN "BIT5"- MODULE CONTAINS TESTRAN
SYMBOL CARDS

 1. PDS2LEF "BIT6"- MODULE CREATED BY
LINKAGE EDITOR F

 1 PDS2REFR "BIT7"- REFRESHABLE MODULE

22 (16) SIGNED 3 PDS2STOR - TOTAL CONTIGUOUS VIRTUAL
STORAGE REQUIREMENT OF MODULE

25 (19) SIGNED 2 PDS2FTBL - LENGTH OF FIRST BLOCK OF TEXT

27 (1B) ADDRESS 3 PDS2EPA - ENTRY POINT ADDRESS ASSOCI-
ATED WITH MEMBER NAME OR WITH
ALIAS NAME IF ALIAS INDICATOR IS
ONE

30 (1E) ADDRESS 3 (0) - LINKAGE EDITOR ASSIGNED ORIGIN
OF FIRST BLOCK OF TEXT (when bit 0
is off)

434 DFSMS/MVS V1R4 Program Management

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

30 (1E) BITSTRING 3 PDS2FTBO (0) - FLAG BYTES (VS/1-VS/2 USE OF
FIELD)

30 (1E) BITSTRING 1 PDS2FTB1 - BYTE 1 OF PDS2FTBO

 1... PDSAOSLE "BIT0"- MODULE HAS BEEN PROC-
ESSED BY VS/1-VS/2 LINKAGE EDITOR

 .1.. PDS2BIG "BIT1" THIS MODULE REQUIRES 16M
OR MORE OF VIRTUAL STORAGE.

 ..1. PDS2PAGA "BIT2"- PAGE ALIGNMENT REQUIRED
FOR LOAD MODULE

 ...1 PDS2SSI "BIT3"- SSI INFORMATION PRESENT

 1... PDSAPFLG "BIT4"- INFORMATION IN PDSAPF IS
VALID

 1.. PDS2LFMT "BIT5" MODULE IS IN PROGRAM
OBJECT FORMAT. THE PDS2FTB3
FIELD IS VALID AND CONTAINS ADDI-
TIONAL FLAGS

31 (1F) BITSTRING 1 PDS2FTB2 - BYTE 2 OF PDS2FTBO

 ...1 PDSLRMOD "BIT3" LOAD MODULE RESIDENCE
| MODE (1=RMODE=ANY, 0=RMODE=24)

 11.. PDSAAMOD "BIT4+ BIT5" ALIAS ENTRY POINT
| ADDRESSING MODE (00=AMODE=24,
| 10=AMODE=31, 11=AMODE=ANY)

 11 PDSMAMOD "BIT6+ BIT7" MAIN ENTRY POINT
ADDRESSING MODE

32 (20) BITSTRING 1 PDS2RLDS (0) NUMBER OF RLD/CONTROL RECORDS
WHICH FOLLOW THE FIRST BLOCK OF
TEXT

32 (20) BITSTRING 1 PDS2FTB3 - BYTE 3 OF PDS2FTBO

 1... PDS2NMIG "BIT0" THIS PROGRAM OBJECT LOAD
MODULE CANNOT BE CONVERTED TO
RECORD FORMAT

 .1.. PDS2PRIM "BIT1" FETCHOPT PRIME WAS SPECI-
FIED

 ..1. PDS2PACK "BIT2" FETCHOPT PACK WAS SPECI-
FIED

X'21' PDSBCEND "*"- END OF BASIC SECTION

X'21' PDSBCLN "PDSBCEND-PDS2"- LENGTH OF BASIC
SECTION

THE FOLLOWING SECTION IS FOR LOAD MODULES WITH SCATTER LOAD

X'21' PDSS01 "*"- START OF SCATTER LOAD
SECTION

33 (21) SIGNED 2 PDS2SLSZ - NUMBER OF BYTES IN SCATTER
LIST

35 (23) SIGNED 2 PDS2TTSZ - NUMBER OF BYTES IN TRANSLATION
TABLE

 Appendix K. Data Areas 435

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

37 (25) CHARACTER 2 PDS2ESDT - IDENTIFICATION OF ESD ITEM
(ESDID) OF CONTROL SECTION TO
WHICH FIRST BLOCK OF TEXT
BELONGS

39 (27) CHARACTER 2 PDS2ESDC - IDENTIFICATION OF ESD ITEM
(ESDID) OF CONTROL SECTION CON-
TAINING ENTRY POINT

X'29' PDSS01ND "*"- END OF SCATTER LOAD SECTION

X'8' PDSS01LN "PDSS01ND-PDSS01"- LENGTH OF
SCATTER LOAD SECTION

THE FOLLOWING SECTION IS FOR LOAD MODULES WITH ALIAS NAMES

X'29' PDSS02 "*"- START OF ALIAS SECTION

41 (29) ADDRESS 3 PDS2EPM - ENTRY POINT FOR MEMBER NAME

X'29' DEENTBK "PDS2EPM"--- ALIAS

44 (2C) CHARACTER 8 PDS2MNM - MEMBER NAME OF LOAD MODULE.
WHEN THE FIRST FIELD (PDS2NAME)
IS AN ALIAS NAME, THIS FIELD CON-
TAINS THE ORIGINAL NAME OF THE
MEMBER EVEN AFTER THE MEMBER
HAS BEEN RENAMED.

X'34' PDSS02ND "*"- END OF ALIAS SECTION

X'B' PDSS02LN "PDSS02ND-PDSS02"- LENGTH OF
ALIAS SECTION

THE FOLLOWING SECTION IS FOR SSI INFORMATION AND IS ON
A HALF-WORD BOUNDARY

52 (34) SIGNED 2 PDSS03 (0) - FORCE HALF-WORD ALIGNMENT

FOR SSI SECTION

52 (34) CHARACTER 4 PDSSSIWD (0) - SSI INFORMATION WORD

52 (34) SIGNED 1 PDSCHLVL - CHANGE LEVEL OF MEMBER

53 (35) BITSTRING 1 PDSSSIFB - SSI FLAG BYTE

 .1.. PDSFORCE "BIT1"- A FORCE CONTROL CARD WAS
USED WHEN EXECUTING THE IHGUAP
PROGRAM

 ..1. PDSUSRCH "BIT2"- A CHANGE WAS MADE TO
MEMBER BY THE INSTALLATION, AS
OPPOSED TO AN IBM-DISTRIBUTED
CHANGE

 ...1 PDSEMFIX "BIT3"- SET WHEN AN EMERGENCY
IBM-AUTHORIZED PROGRAM 'FIX' IS
MADE, AS OPPOSED TO CHANGES
THAT ARE INCLUDED IN AN
IBM-DISTRIBUTED MAINTENANCE
PACKAGE

436 DFSMS/MVS V1R4 Program Management

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

 1... PDSDEPCH "BIT4"- A CHANGE MADE TO THE
MEMBER IS DEPENDENT UPON A
CHANGE MADE TO SOME OTHER
MEMBER IN THE SYSTEM

 11. PDSSYSGN "BIT5+ BIT6"- FLAGS THAT INDICATE
WHETHER OR NOT A CHANGE TO THE
MEMBER WILL NECESSITATE A
PARTIAL OR COMPLETE REGENER-
ATION OF THE SYSTEM

 PDSNOSGN "X'00'"- NOT CRITICAL FOR SYSTEM
GENERATION

 1. PDSCMSGN "BIT6"- MAY REQUIRE COMPLETE
REGENERATION

 1.. PDSPTSGN "BIT5"- MAY REQUIRE PARTIAL
REGENERATION

 1 PDSIBMMB "BIT7"- MEMBER IS SUPPLIED BY IBM

54 (36) CHARACTER 2 PDSMBRSN - MEMBER SERIAL NUMBER

X'38' PDSS03ND "*"- END OF SSI SECTION

X'4' PDSS03LN "PDSS03ND-PDSS03"- LENGTH OF SSI
SECTION

THE FOLLOWING SECTION IS FOR APF INFORMATION

X'38' PDSS04 "*"- START OF APF SECTION

56 (38) CHARACTER 2 PDSAPF (0) - PROGRAM AUTHORIZATION
FACILITY (APF) FIELD

56 (38) SIGNED 1 PDSAPFCT - LENGTH OF PROGRAM AUTHORI-
ZATION CODE (PDSAPFAC) IN BYTES

57 (39) CHARACTER 1 PDSAPFAC - PROGRAM AUTHORIZATION CODE

X'3A' PDSS04ND "*"- END OF APF SECTION

X'2' PDSS04LN "PDSS04ND-PDSS04"- LENGTH OF APF
SECTION

THE FOLLOWING SECTION IS FOR LARGE LOAD MODULES (LLM)

X'3A' PDSLLM "*"- START OF LLM SECTION

58 (3A) SIGNED 1 PDS2LLML - LLM SECTION LENGTH FIELD

59 (3B) SIGNED 4 PDS2VSTR - VIRTUAL STORAGE REQUIREMENT
FOR THIS MODULE

63 (3F) SIGNED 4 PDS2MEPA - MAIN ENTRY POINT OFFSET

67 (43) SIGNED 4 PDS2AEPA - ALIAS ENTRY POINT OFFSET. ONLY
VALID IF THIS IS AN DIRECTORY
ENTRY IS FOR AN ALIAS

X'47' PDSLLMND "*"- END OF LLM SECTION

X'D' PDSLLMLN "PDSLLMND-PDSLLM"- LENGTH OF
LLM SECTION

 Appendix K. Data Areas 437

 Data Areas

 Cross Reference

Hex Hex
Name Offset Value

PDSAAMOD 1F C
PDSAOSLE 1E 80
PDSAPF 38
PDSAPFAC 39
PDSAPFCT 38
PDSAPFLG 1E 8
PDSBCEND 20 21
PDSBCLN 20 21
PDSCHLVL 34
PDSCMSGN 35 2
PDSDEPCH 35 8
PDSEMFIX 35 10
PDSFORCE 35 40
PDSIBMMB 35 1
PDSLLM 39 3A
PDSLLMLN 43 D
PDSLLMND 43 47
PDSLRMOD 1F 10
PDSMAMOD 1F 3
PDSMBRSN 36
PDSNOSGN 35 0
PDSPTSGN 35 4
PDSSSIFB 35
PDSSSIWD 34
PDSSYSGN 35 6
PDSS01 20 21
PDSS01LN 27 8
PDSS01ND 27 29
PDSS02 27 29
PDSS02LN 2C B
PDSS02ND 2C 34
PDSS03 34
PDSS03LN 36 4
PDSS03ND 36 38
PDSS04 36 38
PDSS04LN 39 2
PDSS04ND 39 3A
PDSUSRCH 35 20
PDS2AEPA 43
PDS2ALIS B 80
PDS2ATR 14
PDS2ATR1 14
PDS2ATR2 15
PDS2BIG 1E 40
PDS2EPA 1B
PDS2EPM 29
PDS2EP0 15 20
PDS2ESDC 27
PDS2ESDT 25
PDS2EXEC 14 2
PDS2FLVL 15 80
PDS2FTBL 19
PDS2FTBO 1E
PDS2FTB1 1E
PDS2FTB2 1F

Hex Hex
Name Offset Value

PDS2FTB3 20
PDS2INDC B
PDS2LEF 15 2
PDS2LFMT 1E 4
PDS2LLML 3A
PDS2LOAD 14 8
PDS2LUSR B 1F
PDS2MEPA 3F
PDS2MNM 2C
PDS2NAME 0
PDS2NL 13
PDS2NMIG 20 80
PDS2NREP 15 8
PDS2NRLD 15 10
PDS2NTTR B 60
PDS2ORG0 15 40
PDS2OVLY 14 20
PDS2PACK 20 20
PDS2PAGA 1E 20
PDS2PRIM 20 40
PDS2REFR 15 1
PDS2RENT 14 80
PDS2REUS 14 40
PDS2RLDS 20
PDS2SCTR 14 4
PDS2SLSZ 21
PDS2SSI 1E 10
PDS2STOR 16
PDS2TEST 14 10
PDS2TSTN 15 4
PDS2TTRN 10
PDS2TTRP 8
PDS2TTRT C
PDS2TTSZ 23
PDS2USRD C
PDS2VSTR 3B
PDS2ZERO F
PDS21BLK 14 1

438 DFSMS/MVS V1R4 Program Management

 Data Areas

PDS Directory Entry Format Returned by BLDL
The following describes the format of a partitioned data set (PDS) directory entry.
This format describes what is returned by BLDL for each PDS directory entry
member. You can use the IHAPDS macro to map this control block.

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

0 (0) CHARACTER 8 PDS2NAME - LOAD MODULE MEMBER NAME OR
ALIAS

8 (8) CHARACTER 3 PDS2TTRP - TTR OF FIRST BLOCK OF NAMED
MEMBER

11 (B) CHARACTER 1 PDS2CNCT - CONCATENATION NUMBER OF THE
DATA SET

12 (C) CHARACTER 1 PDS2LIBF - LIBRARY FLAG FIELD

 PDS2LNRM "X'00'"- NORMAL CASE

 1 PDS2LLNK "X'01'"- IF DCB OPERAND IN BLDL
MACRO INSTRUCTION WAS SPECI-
FIED AS ZERO, NAME WAS FOUND IN
LINK LIBRARY

 1. PDS2LJOB "X'02'"- IF DCB OPERAND IN BLDL
MACRO INSTRUCTION WAS SPECI-
FIED AS ZERO, NAME WAS FOUND IN
JOB LIBRARY

13 (D) BITSTRING 1 PDS2INDC - INDICATOR BYTE

 1... PDS2ALIS "BIT0"- NAME IN THE FIRST FIELD IS
AN ALIAS

 1... DEALIAS "BIT0"--- ALIAS FOR PDS2ALIS

 .11. PDS2NTTR "BIT1+ BIT2"- NUMBER OF TTR'S IN
THE USER DATA FIELD

 ...1 1111 PDS2LUSR "BIT3+ BIT4+ BIT5+ BIT6+ BIT7" -
LENGTH OF USER DATA FIELD IN
HALF WORDS

14 (E) CHARACTER 1 PDS2USRD (0) - START OF VARIABLE LENGTH USER
DATA FIELD

14 (E) CHARACTER 3 PDS2TTRT - TTR OF FIRST BLOCK OF TEXT

17 (11) CHARACTER 1 PDS2ZERO - ZERO

18 (12) CHARACTER 3 PDS2TTRN - TTR OF NOTE LIST OR
SCATTER/TRANSLATION TABLE. USED
FOR MODULES IN SCATTER LOAD
FORMAT OR OVERLAY STRUCTURE
ONLY.

21 (15) SIGNED 1 PDS2NL - NUMBER OF ENTRIES IN NOTE LIST
FOR MODULES IN OVERLAY STRUC-
TURE

22 (16) BITSTRING 2 PDS2ATR (0) - TWO-BYTE MODULE ATTRIBUTE
FIELD

22 (16) BITSTRING 1 PDS2ATR1 - FIRST BYTE OF MODULE ATTRIBUTE
FIELD

 Appendix K. Data Areas 439

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

 1... PDS2RENT "BIT0"- REENTERABLE

 .1.. PDS2REUS "BIT1"- REUSABLE

 ..1. PDS2OVLY "BIT2"- IN OVERLAY STRUCTURE

 ...1 PDS2TEST "BIT3"- MODULE TO BE TESTED -
TESTRAN

 1... PDS2LOAD "BIT4"- ONLY LOADABLE

 1.. PDS2SCTR "BIT5"- SCATTER FORMAT

 1. PDS2EXEC "BIT6"- EXECUTABLE

 1 PDS21BLK "BIT7"- IF ZERO, MODULE CONTAINS
MULTIPLE RECORDS WITH AT LEAST
ONE BLOCK OF TEXT. --- IF ONE,
MODULE CONTAINS NO RLD ITEMS
AND ONLY ONE BLOCK OF TEXT.

23 (17) BITSTRING 1 PDS2ATR2 - SECOND BYTE OF MODULE ATTRI-
BUTE FIELD

 1... PDS2FLVL "BIT0"- IF ZERO, MODULE CAN BE
PROCESSED BY ALL LEVELS OF
LINKAGE EDITOR. --- IF ONE, MODULE
CAN BE PROCESSED ONLY BY F
LEVEL OF LINKAGE EDITOR.

 .1.. PDS2ORG0 "BIT1"- LINKAGE EDITOR ASSIGNED
ORIGIN OF FIRST BLOCK OF TEXT IS
ZERO.

 ..1. PDS2EP0 "BIT2"- ENTRY POINT ASSIGNED BY
LINKAGE EDITOR IS ZERO

 ...1 PDS2NRLD "BIT3"- MODULE CONTAINS NO RLD
ITEMS

 1... PDS2NREP "BIT4"- MODULE CANNOT BE REPROC-
ESSED BY LINKAGE EDITOR

 1.. PDS2TSTN "BIT5"- MODULE CONTAINS TESTRAN
SYMBOL CARDS

 1. PDS2LEF "BIT6"- MODULE CREATED BY
LINKAGE EDITOR F

 1 PDS2REFR "BIT7"- REFRESHABLE MODULE

24 (18) SIGNED 3 PDS2STOR - TOTAL CONTIGUOUS VIRTUAL
STORAGE REQUIREMENT OF MODULE

27 (1B) SIGNED 2 PDS2FTBL - LENGTH OF FIRST BLOCK OF TEXT

29 (1D) ADDRESS 3 PDS2EPA - ENTRY POINT ADDRESS ASSOCI-
ATED WITH MEMBER NAME OR WITH
ALIAS NAME IF ALIAS INDICATOR IS
ONE

32 (20) ADDRESS 3 (0) - LINKAGE EDITOR ASSIGNED ORIGIN
OF FIRST BLOCK OF TEXT (OS USE
OF FIELD)

32 (20) BITSTRING 3 PDS2FTBO (0) - FLAG BYTES (VS/1-VS/2 USE OF
FIELD)

440 DFSMS/MVS V1R4 Program Management

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

32 (20) BITSTRING 1 PDS2FTB1 - BYTE 1 OF PDS2FTBO

 1... PDSAOSLE "BIT0"- MODULE HAS BEEN PROC-
ESSED BY VS/1-VS/2 LINKAGE EDITOR

 .1.. PDS2BIG "BIT1" THIS MODULE REQUIRES 16M
OR MORE OF VIRTUAL STORAGE.

 ..1. PDS2PAGA "BIT2"- PAGE ALIGNMENT REQUIRED
FOR LOAD MODULE

 ...1 PDS2SSI "BIT3"- SSI INFORMATION PRESENT

 1... PDSAPFLG "BIT4"- INFORMATION IN PDSAPF IS
VALID

 1.. PDS2LFMT "BIT5" MODULE IS IN PROGRAM
OBJECT FORMAT. THE PDS2FTB3
FIELD IS VALID AND CONTAINS ADDI-
TIONAL FLAGS

33 (21) BITSTRING 1 PDS2FTB2 - BYTE 2 OF PDS2FTBO

 ...1 PDSLRMOD "BIT3" LOAD MODULE RESIDENCE
MODE

 11.. PDSAAMOD "BIT4+ BIT5" ALIAS ENTRY POINT
ADDRESSING MODE

 11 PDSMAMOD "BIT6+ BIT7" MAIN ENTRY POINT
ADDRESSING MODE

34 (22) BITSTRING 1 PDS2RLDS (0) NUMBER OF RLD/CONTROL RECORDS
WHICH FOLLOW THE FIRST BLOCK OF
TEXT

34 (22) BITSTRING 1 PDS2FTB3 - BYTE 3 OF PDS2FTBO

 1... PDS2NMIG "BIT0" THIS PROGRAM OBJECT LOAD
MODULE CANNOT BE CONVERTED TO
RECORD FORMAT

 .1.. PDS2PRIM "BIT1" FETCHOPT PRIME WAS SPECI-
FIED

 ..1. PDS2PACK "BIT2" FETCHOPT PACK WAS SPECI-
FIED

X'23' PDSBCEND "*"- END OF BASIC SECTION

X'23' PDSBCLN "PDSBCEND-PDS2"- LENGTH OF BASIC
SECTION

THE FOLLOWING SECTION IS FOR LOAD MODULES WITH SCATTER LOAD

X'23' PDSS01 "*"- START OF SCATTER LOAD
SECTION

35 (23) SIGNED 2 PDS2SLSZ - NUMBER OF BYTES IN SCATTER
LIST

37 (25) SIGNED 2 PDS2TTSZ - NUMBER OF BYTES IN TRANSLATION
TABLE

 Appendix K. Data Areas 441

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

39 (27) CHARACTER 2 PDS2ESDT - IDENTIFICATION OF ESD ITEM
(ESDID) OF CONTROL SECTION TO
WHICH FIRST BLOCK OF TEXT
BELONGS

41 (29) CHARACTER 2 PDS2ESDC - IDENTIFICATION OF ESD ITEM
(ESDID) OF CONTROL SECTION CON-
TAINING ENTRY POINT

X'2B' PDSS01ND "*"- END OF SCATTER LOAD SECTION

X'8' PDSS01LN "PDSS01ND-PDSS01"- LENGTH OF
SCATTER LOAD SECTION

THE FOLLOWING SECTION IS FOR LOAD MODULES WITH ALIAS NAMES

X'2B' PDSS02 "*"- START OF ALIAS SECTION

43 (2B) ADDRESS 3 PDS2EPM - ENTRY POINT FOR MEMBER NAME

X'2B' DEENTBK "PDS2EPM"--- ALIAS

46 (2E) CHARACTER 8 PDS2MNM - MEMBER NAME OF LOAD MODULE.
WHEN THE FIRST FIELD (PDS2NAME)
IS AN ALIAS NAME, THIS FIELD CON-
TAINS THE ORIGINAL NAME OF THE
MEMBER EVEN AFTER THE MEMBER
HAS BEEN RENAMED.

X'36' PDSS02ND "*"- END OF ALIAS SECTION

X'B' PDSS02LN "PDSS02ND-PDSS02"- LENGTH OF
ALIAS SECTION

THE FOLLOWING SECTION IS FOR SSI INFORMATION AND IS ON
A HALF-WORD BOUNDARY

54 (36) SIGNED 2 PDSS03 (0) - FORCE HALF-WORD ALIGNMENT

FOR SSI SECTION

54 (36) CHARACTER 4 PDSSSIWD (0) - SSI INFORMATION WORD

54 (36) SIGNED 1 PDSCHLVL - CHANGE LEVEL OF MEMBER

55 (37) BITSTRING 1 PDSSSIFB - SSI FLAG BYTE

 .1.. PDSFORCE "BIT1"- A FORCE CONTROL CARD WAS
USED WHEN EXECUTING THE IHGUAP
PROGRAM

 ..1. PDSUSRCH "BIT2"- A CHANGE WAS MADE TO
MEMBER BY THE INSTALLATION, AS
OPPOSED TO AN IBM-DISTRIBUTED
CHANGE

 ...1 PDSEMFIX "BIT3"- SET WHEN AN EMERGENCY
IBM-AUTHORIZED PROGRAM 'FIX' IS
MADE, AS OPPOSED TO CHANGES
THAT ARE INCLUDED IN AN
IBM-DISTRIBUTED MAINTENANCE
PACKAGE

442 DFSMS/MVS V1R4 Program Management

 Data Areas

Offsets

Type/Value Len Name (Dim) DescriptionDec Hex

 1... PDSDEPCH "BIT4"- A CHANGE MADE TO THE
MEMBER IS DEPENDENT UPON A
CHANGE MADE TO SOME OTHER
MEMBER IN THE SYSTEM

 11. PDSSYSGN "BIT5+ BIT6"- FLAGS THAT INDICATE
WHETHER OR NOT A CHANGE TO THE
MEMBER WILL NECESSITATE A
PARTIAL OR COMPLETE REGENER-
ATION OF THE SYSTEM

 PDSNOSGN "X'00'"- NOT CRITICAL FOR SYSTEM
GENERATION

 1. PDSCMSGN "BIT6"- MAY REQUIRE COMPLETE
REGENERATION

 1.. PDSPTSGN "BIT5"- MAY REQUIRE PARTIAL
REGENERATION

 1 PDSIBMMB "BIT7"- MEMBER IS SUPPLIED BY IBM

56 (38) CHARACTER 2 PDSMBRSN - MEMBER SERIAL NUMBER

X'3A' PDSS03ND "*"- END OF SSI SECTION

X'4' PDSS03LN "PDSS03ND-PDSS03"- LENGTH OF SSI
SECTION

THE FOLLOWING SECTION IS FOR APF INFORMATION

X'3A' PDSS04 "*"- START OF APF SECTION

58 (3A) CHARACTER 2 PDSAPF (0) - PROGRAM AUTHORIZATION
FACILITY (APF) FIELD

58 (3A) SIGNED 1 PDSAPFCT - LENGTH OF PROGRAM AUTHORI-
ZATION CODE (PDSAPFAC) IN BYTES

59 (3B) CHARACTER 1 PDSAPFAC - PROGRAM AUTHORIZATION CODE

X'3C' PDSS04ND "*"- END OF APF SECTION

X'2' PDSS04LN "PDSS04ND-PDSS04"- LENGTH OF APF
SECTION

THE FOLLOWING SECTION IS FOR LARGE LOAD MODULES (LLM)

X'3C' PDSLLM "*"- START OF LLM SECTION

60 (3C) SIGNED 1 PDS2LLML - LLM SECTION LENGTH FIELD

61 (3D) SIGNED 4 PDS2VSTR - VIRTUAL STORAGE REQUIREMENT
FOR THIS MODULE

65 (41) SIGNED 4 PDS2MEPA - MAIN ENTRY POINT OFFSET

69 (45) SIGNED 4 PDS2AEPA - ALIAS ENTRY POINT OFFSET. ONLY
VALID IF THIS IS AN DIRECTORY
ENTRY IS FOR AN ALIAS

X'49' PDSLLMND "*"- END OF LLM SECTION

X'D' PDSLLMLN "PDSLLMND-PDSLLM"- LENGTH OF
LLM SECTION

 Appendix K. Data Areas 443

 Data Areas

 Cross Reference

Hex Hex
Name Offset Value

PDSAAMOD 21 C
PDSAOSLE 20 80
PDSAPF 3A
PDSAPFAC 3B
PDSAPFCT 3A
PDSAPFLG 20 8
PDSBCEND 22 23
PDSBCLN 22 23
PDSCHLVL 36
PDSCMSGN 37 2
PDSDEPCH 37 8
PDSEMFIX 37 10
PDSFORCE 37 40
PDSIBMMB 37 1
PDSLLM 3B 3C
PDSLLMLN 45 D
PDSLLMND 45 49
PDSLRMOD 21 10
PDSMAMOD 21 3
PDSMBRSN 38
PDSNOSGN 37 0
PDSPTSGN 37 4
PDSSSIFB 37
PDSSSIWD 36
PDSSYSGN 37 6
PDSS01 22 23
PDSS01LN 29 8
PDSS01ND 29 2B
PDSS02 29 2B
PDSS02LN 2E B
PDSS02ND 2E 36
PDSS03 36
PDSS03LN 38 4
PDSS03ND 38 3A
PDSS04 38 3A
PDSS04LN 3B 2
PDSS04ND 3B 3C
PDSUSRCH 37 20
PDS2AEPA 45
PDS2ALIS D 80
PDS2ATR 16
PDS2ATR1 16
PDS2ATR2 17
PDS2BIG 20 40
PDS2CNCT B
PDS2EPA 1D
PDS2EPM 2B
PDS2EP0 17 20
PDS2ESDC 29
PDS2ESDT 27
PDS2EXEC 16 2
PDS2FLVL 17 80
PDS2FTBL 1B
PDS2FTBO 20
PDS2FTB1 20

Hex Hex
Name Offset Value

PDS2FTB2 21
PDS2FTB3 22
PDS2INDC D
PDS2LEF 17 2
PDS2LFMT 20 4
PDS2LIBF C
PDS2LJOB C 2
PDS2LLML 3C
PDS2LLNK C 1
PDS2LNRM C 0
PDS2LOAD 16 8
PDS2LUSR D 1F
PDS2MEPA 41
PDS2MNM 2E
PDS2NAME 0
PDS2NL 15
PDS2NMIG 22 80
PDS2NREP 17 8
PDS2NRLD 17 10
PDS2NTTR D 60
PDS2ORG0 17 40
PDS2OVLY 16 20
PDS2PACK 22 20
PDS2PAGA 20 20
PDS2PRIM 22 40
PDS2REFR 17 1
PDS2RENT 16 80
PDS2REUS 16 40
PDS2RLDS 22
PDS2SCTR 16 4
PDS2SLSZ 23
PDS2SSI 20 10
PDS2STOR 18
PDS2TEST 16 10
PDS2TSTN 17 4
PDS2TTRN 12
PDS2TTRP 8
PDS2TTRT E
PDS2TTSZ 25
PDS2USRD E
PDS2VSTR 3D
PDS2ZERO 11
PDS21BLK 16 1

444 DFSMS/MVS V1R4 Program Management

 Data Areas

PDSE Directory Entry Returned by DESERV
This section describes the format of a PDSE entry returned by the DESERV macro.
The formats shown here are specific to PDSE program libraries.

The system managed directory entry (SMDE) can represent either a program object
in a PDSE or a load module in a PDS. The SMDE also represents both primary
(member) entries and aliases. The SMDE consists of several sections which
appear depending on the type of directory entry being provided:

� Primary entry for a load module: BASIC+NAME+PMAR (including PMARR)

� Alias entry for a load module: BASIC+NAME+PNAME+PMAR (including
PMARR)

� Primary entry for a program object: BASIC+NAME+TOKEN+PMAR (including
PMARL)

� Alias entry for a program object: BASIC+NAME+TOKEN+PMAR (including
PMARL)

The basic SMDE format is shown in Figure 193.

Figure 193 (Page 1 of 2). SMDE Format

Offset
Length or
Bit Pattern Name Description

00 (X'00') variable SMDE Member directory entry (structure)

00 (X'00') 44 SMDE_BASIC Start of basic section (character)

00 (X'00') 16 SMDE_HDR Header (character)

00 (X'00') 8 SMDE_ID Eyecatcher (character)

08 (X'08') 4 SMDE_LEN Length of control block. This is the sum of the sizes
of the SMDE sections and the size of the user data.
(unsigned)

12 (X'0C') 1 SMDE_LVL SMDE version number (unsigned)

X'01' SMDE_LVL_VAL Constant to be used with SMDE_LVL

13 (X'0D') 3 - Reserved

16 (X'10') 1 SMDE_LIBTYPE Source library type. Possible values are declared
below with names like SMDE_LIBTYPE_XXX.
(unsigned)

| X'03'| SMDE_LIBTYPE_C370LIB| Constant to be used with SMDE_LIBTYPE

X'02' SMDE_LIBTYPE_HFS Constant to be used with SMDE_LIBTYPE

X'01' SMDE_LIBTYPE_PDSE Constant to be used with SMDE_LIBTYPE

X'00' SMDE_LIBTYPE_PDS Constant to be used with SMDE_LIBTYPE

17 (X'11') 1 SMDE_FLAG Flag byte (bitstring)

1... SMDE_FLAG_ALIAS Entry is an alias

.1.. SMDE_FLAG_LMOD Member is a program

..xx xxxx * Reserved

| 18 (X'12')| 2| SMDE_LONG_NAME_INDEX| Program Management index. Used internally to iden-
| tify a name greater than 63 bytes in length. Zero if
| name length is 63 or less. (unsigned)

 Appendix K. Data Areas 445

 Data Areas

Figure 193 (Page 2 of 2). SMDE Format

Offset
Length or
Bit Pattern Name Description

20 (X'14') 5 - Extended MLTK (character)

20 (X'14') 1 - Reserved, must be zero

21 (X'15') 4 SMDE_MLTK MLT and concatenation number (character)

21 (X'15') 3 SMDE_MLT MLT of member - zero if OpenEdition (character)

24 (X'18') 1 SMDE_CNCT Concatenation number (unsigned)

25 (X'19') 1 SMDE_LIBF Library flag - Z-byte (unsigned)

X'02' SMDE_LIBF_TASKLIB Constant to be used with SMDE_LIBF

X'01' SMDE_LIBF_LINKLIB Constant to be used with SMDE_LIBF

X'00' SMDE_LIBF_PRIVATE Constant to be used with SMDE_LIBF

26 (X'1A') 2 SMDE_NAME_OFF Name offset (signed)

28 (X'1C') 2 SMDE_USRD_LEN User data length (signed)

28 (X'1C') 2 SMDE_PMAR_LEN Sum of lengths of program management attribute
record sections (PMAR, PMARR, PMARL) (signed)

30 (X'1E') 2 SMDE_USERD_OFF User data offset (signed)

30 (X'1E') 2 SMDE_PMAR_OFF Program management attribute record offset (signed)

32 (X'20') 2 SMDE_TOKEN_LEN Token length (signed)

34 (X'22') 2 SMDE_TOKEN_OFF Token data offset (signed)

36 (X'24') 2 SMDE_PNAME_OFF Primary name offset, zero for non-alias SMDEs or if
library type is a PDS and this is not a program.
(signed)

38 (X'26') 2 SMDE_NLST_CNT Number of note list entries that exist at beginning of
user data field. Always zero for non-PDS members.
(signed)

40 (X'28') 4 - Reserved

44 (X'2C') variable SMDE_SECTIONS Start of entry sections (character)

Figure 194 through Figure 198 on page 447 shows the optional
SMDE_SECTIONS, or extensions to the SMDE.

Figure 194. Directory Entry Name Section

Offset
Length or
Bit Pattern Name Description

00 (X'00') variable SMDE_NAME Name descriptor (structure)

00 (X'00') 2 SMDE_NAME_LEN Length of entry name (signed)

2 (X'02') variable SMDE_NAME_VAL Entry name (character)

Figure 195 (Page 1 of 2). Directory Entry Notelist Section (PDS Only)

Offset
Length or
Bit Pattern Name Description

00 (X'00') variable SMDE_NLST Note list extension (structure)

446 DFSMS/MVS V1R4 Program Management

 Data Areas

Figure 195 (Page 2 of 2). Directory Entry Notelist Section (PDS Only)

Offset
Length or
Bit Pattern Name Description

00 (X'00') 4 SMDE_NLST_ENTRY Note list entries (character)

00 (X'00') 3 SMDE_NLST_RLT Note list record location token (character)

3 (X'03') 1 SMDE_NLST_NUM Number of RLT described by this note list block. If 0
this is not a notelist but a data block. (unsigned)

Figure 196. Directory Entry Token Section

Offset
Length or
Bit Pattern Name Description

00 (X'00') 32 SMDE_TOKEN (structure)

00 (X'00') 4 SMDE_TOKEN_CONNID CONNECT_IDENTIFIER (unsigned)

4 (X'04') 4 SMDE_TOKEN_ITEMNO Item number (unsigned)

08 (X'08') 24 SMDE_TOKEN_FT File token (character)

| Figure 197. OpenEdition File Descriptor Section

| Offset
| Length or
| Bit Pattern| Name| Description

| 00 (X'00')| 4| SMDE_FD| (structure)

| 00 (X'00')| 4| SMDE_FD_TOKEN| File descriptor (unsigned)

Figure 198. Directory Entry Primary Name Section

Offset
Length or
Bit Pattern Name Description

00 (X'00') variable SMDE_PNAME Primary name descriptor (structure)

00 (X'00') 2 SMDE_PNAME_LEN Length of primary name (signed)

2 (X'02') variable SMDE_PNAME_VAL Primary name (character)

If the SMDE represents a directory entry for a program (either a load module or a
program object) the program's attributes are defined by the PMAR structure. The
PMAR is a subfield of the SMDE and its offset is defined by the field
SMDE_PMAR_OFF. Figure 199 shows the basic PMAR definition. Figure 200 on
page 450 and Figure 201 on page 451 show the PMAR extensions for program
objects (PMARL) and load modules (PMARR), respectively.

If the SMDE represents a data member of a PDS or a PDSE, the
SMDE_USRD_OFF field indicates the offset into the SMDE for the user data of the
directory entry.

 Appendix K. Data Areas 447

 Data Areas

Figure 199 (Page 1 of 3). Directory Entry Name Section. Data is always present at offset SMDE_PMAR_OFF in an
SMDE.

Offset
Length or
Bit Pattern Name Description

00 (X'00') 30 PMAR Basic section of program user data (structure)

00 (X'00') 30 PMAR_ENTRY Alternative name for the PMAR section (character)

00 (X'00') 2 PMAR_SLEN Section length (unsigned)

2 (X'02') 1 PMAR_LVL PMAR format level (unsigned)

X'03' PMAR_LVL_VAL Constant to be used with PMAR_LVL

X'01' PMAR_PM1_VAL Constant to be used with PMAR_LVL

X'02' PMAR_PM2_VAL Constant to be used with PMAR_LVL

| X'03'| PMAR_PM3_VAL| Constant to be used with PMAR_LVL

3 (X'03') 1 PMAR_PLVL Bind processor creating object 1 - E-level linkage
editor 2 - F-level linkage editor 3 - (VS1/VS2) linkage
editor 4 - XA linkage editor 5 - binder version 1.
(unsigned)

X'01' PMAR_PLVL_E_VAL Constant to be used with PMAR_PLVL

X'02' PMAR_PLVL_F_VAL Constant to be used with PMAR_PLVL

X'03' PMAR_PLVL_AOS_VAL Constant to be used with PMAR_PLVL

X'04' PMAR_PLVL_XA_VAL Constant to be used with PMAR_PLVL

X'05' PMAR_PLVL_B1_VAL Constant to be used with PMAR_PLVL

X'06' PMAR_PLVL_B2_VAL Constant to be used with PMAR_PLVL

4 (X'04') 4 PMAR_ATR Attribute bytes (character)

4 (X'04') 1 PMAR_ATR1 First attribute byte. These flags must be at the same
offsets as the corresponding flags in PDS2ATR1
declared by macro IHAPDS. (bitstring)

1... PMAR_RENT Reenterable

.1.. PMAR_REUS Reusable

..1. PMAR_OVLY Overlay structure

...1 PMAR_TEST Module to be tested - TSO/E TEST

.... 1... PMAR_LOAD Only loadable

.... .1.. PMAR_SCTR Scatter format

.... ..1. PMAR_EXEC Executable

.... ...1 PMAR_1BLK Load module contains only one block of text data and
has no RLD data.

448 DFSMS/MVS V1R4 Program Management

 Data Areas

Figure 199 (Page 2 of 3). Directory Entry Name Section. Data is always present at offset SMDE_PMAR_OFF in an
SMDE.

Offset
Length or
Bit Pattern Name Description

5 (X'05') 1 PMAR_ATR2 Second attribute byte. These flags must be at the
same offsets as the corresponding flags in
PDS2ATR2 declared by macro IHAPDS. (bitstring)

1... PMAR_FLVL If on, the program cannot be processed by the E level
linkage editor. If off, the program can be processed
by any level of the linkage editor or the binder.

.1.. PMAR_ORGO Linkage editor assigned origin of first block of text is
zero.

..x. - Reserved

...1 PMAR_NRLD Program contains no RLD items

.... 1... PMAR_NREP Module cannot be reprocessed by the linkage editor

.... .1.. PMAR_TSTN Module contains TSO/E TEST symbol cards

.... ..x. - Reserved

.... ...1 PMAR REFR Refreshable program

6 (X'06') 1 PMAR_ATR3 Third attribute byte. (bitstring)

6 (X'06') 1 PMAR_FTB1 Alternative name for flags byte. These flags must be
at the same offsets as the corresponding flags in
PDS2FTB1 declared by macro IHAPDS. (bitstring)

x... - Reserved

.1.. PMAR_BIG This program requires 16 MB or more of virtual
storage.

..1. PMAR_PAGA Page alignment is required

...1 PMAR_XSSI SSI information present

.... 1... PMAR_XAPF APF information present

.... .1.. PMAR_LFMT PMARL follows PMAR.

.... ..xx - Reserved

7 (X'07') 1 PMAR_ATR4 Fourth attribute byte (bitstring)

7 (X'07') 1 PMAR_FTB2 Alternative name for flags byte. These flags must be
at the same offsets as the corresponding flags in
PDS2FTB2 declared by macro IHAPDS. (bitstring)

1... PMAR_ALTP Alternate primary flag. If on for a primary name, indi-
cates primary name was generated by the Binder. If
on for an alias, indicates the long alias name was
specified as the primary name on the bind.

.xx. - Reserved

...1 PMAR_RMOD RMODE is ANY.

.... xx.. PMAR_AAMD Alias entry point addressing mode. If B'00', AMODE
is 24. If B'10', AMODE is 31. If B'11', AMODE is
ANY.

.... ..xx PMAR_MAMD Main entry point addressing mode. If B'00' AMODE is
24. If B'10', AMODE is 31. If B'11', AMODE is ANY.

8 (X'08') 1 - Reserved

 Appendix K. Data Areas 449

 Data Areas

Figure 199 (Page 3 of 3). Directory Entry Name Section. Data is always present at offset SMDE_PMAR_OFF in an
SMDE.

Offset
Length or
Bit Pattern Name Description

9 (X'09') 1 PMAR_AC APF authorization code (unsigned)

10 (X'0A') 4 PMAR_STOR Virtual storage required (unsigned)

14 (X'0E') 4 PMAR_EPM Main entry point offset (unsigned)

18 (X'12') 4 PMAR_EPA This entry point offset (unsigned)

22 (X'16') 4 PMAR_SSI SSI information (bitstring)

22 (X'16') 1 PMAR_CHLV Change level of member (unsigned)

23 (X'17') 1 PMAR_SSFB SSI flag byte (bitstring)

24 (X'18') 2 PMAR_MSER Member serial number (Reserved)

26 (X'1A') 4 - Reserved

30 (X'1E') variable PMAR_END End of basic section (character)

Figure 200 (Page 1 of 2). LSLoader Attributes Unique to Program Objects. If PMAR_LFMT=ON this section follows
the PMAR basic section.

Offset
Length or
Bit Pattern Name Description

00 (X'00') variable PMARL LSLoader section for program objects. Length is
dependent on PMAR_LVL (structure)

00 (X'00') 2 PMARL_SLEN Section length (unsigned)

2 (X'02') variable PMARL_DATA Section data. Length is dependent on PMAR_LVL
(structure)

2 (X'02') 4 PMARL_ATR Attribute bytes (character)

2 (X'02') 1 PMARL_ATR1 Fifth attribute byte (bitstring)

1... PMARL_NMIG This program object cannot be converted directly to
PDS load module format.

.1.. PMARL_PRIM FETCHOPT PRIME option

..1. PMARL_PACK FETCHOPT PACK option

...x xxxx - Reserved

450 DFSMS/MVS V1R4 Program Management

 Data Areas

Figure 200 (Page 2 of 2). LSLoader Attributes Unique to Program Objects. If PMAR_LFMT=ON this section follows
the PMAR basic section.

Offset
Length or
Bit Pattern Name Description

3 (X'03') 1 PMARL_ATR2 Sixth attribute byte (bitstring)

1... PMARL_CMPR Compressed format module

.1.. PMARL_1RMOD First segment is RMODE Any, set for PM2 or higher
level PO only

..1. PMARL_2RMOD Second segment is RMODE Any, set for PM2 or
higher level PO if there are at least two segments.

| ...x| -| Reserved

.... 1... PMARL_1ALIN First segment is page-aligned, set for PM2 or higher
level PO only

.... .1.. PMARL_2ALIN Second segment is page-aligned, set for PM2 or
higher level PO if there are at least 2 segments.

.... ..1. PMARL_FILL FILL option specified set for PM2 or higher level PO
only

.... ...x - Reserved

4 (X'04') 1 PMARL_FILLVAL FILL character value set for PM2 or higher level PO
only

5 (X'05') 1 - Reserved

66 (X'42') 16 PMARL_TRACE AUDIT trace data, present for PM2 or higher level PO
only

66 (X'42') 4 PMARL_DATE Date saved, present for PM2 or higher level PO only

70 (X'46') 4 PMARL_TIME Time saved, present for PM2 or higher level PO only

74 (X'4A') 8 PMARL_USER User or job identification, present for PM2 or higher
level PO only

| 82 (X'52')| 16| PMARL_PM3| Additional fields present in PM3-level PO

| 82 (X'52')| 1| PMARL_PM3FL1| Flag byte (bitstring)

| 1...| PMARL_HIDE| Name is an alias that can be hidden

| .1..| PMARL_DLLENA| PO is DLL-enabled

| ..1.| PMARL_MUSTDELET| If on and directed LOAD invoked for this module,
| Must_Delete function must be issued before freeing
| or reusing module storage

| ...1| PMARL_IEWBLITP| If on, PMARL_IEWBLITO is valid.

| 1...| PMARL_MANGLED| Name is mangled

|xxx| -| Reserved

| 94 (X'5E')| 4| PMARL_IEWBLITO| Offset of IEWBLIT structure from module load point
| (signed)

98 (X'62') variable PMARL_END End of LSLoader section (character)

 Appendix K. Data Areas 451

 Data Areas

Figure 201. Attributes Unique to Load Modules (PDS only). If PMAR_LFMT=OFF then this section follows the PMAR
basic section.

Offset
Length or
Bit Pattern Name Description

00 (X'00') 23 PMARR Load module (PDS) attributes section (structure)

00 (X'00') 2 PMARR_SLEN Section length (unsigned)

2 (X'02') 21 PMARR_DATA Section data (character)

2 (X'02') 8 PMARR_TTRS TTR fields (character)

2 (X'02') 3 PMARR_TTRT TTR of first block of text (character)

5 (X'05') 1 PMARR_ZERO Zero (character)

6 (X'06') 3 PMARR_TTRN TTR of note list or scatter translation table. Used for
modules in scatter load format or overlay structure
only. (character)

9 (X'09') 1 PMARR_NL Number of entries in note list for scatter format
modules and modules in overlay structure, otherwise
zero. (address)

10 (X'0A') 2 PMARR_FTBL Length of first block of text (signed)

12 (X'0C') 3 PMARR_ORG Load module origin if 0 (unsigned)

12 (X'0C') 2 - Reserved

14 (X'0E') 1 PMARR_RLDS Number of RLD/CTL records that follow the first text
record

15 (X'F') 8 PMARR_SCAT Scatter load information (character)

15 (X'F') 2 PMARR_SLSZ Scatter list length (unsigned)

17 (X'11') 2 PMARR_TTSZ Translation table length (unsigned)

19 (X'13') 2 PMARR_ESDT ESDID of first text block (character)

21 (X'15') 2 PMARR_ESDC ESDID of EP control section (character)

23 (X'17') variable PMARR_END End of load module attributes (character)

Figure 202 (Page 1 of 2). Alias in Unformatted Form. Used only as input to the PUT function.

Offset
Length or
Bit Pattern Name Description

00 (X'00') 7 PMARA PMAR alias entry section (structure)

00 (X'00') 2 PMARA_LEN Section length (unsigned)

2 (X'02') 5 PMARA_DATA Section data (character)

2 (X'02') 4 PMARA_EPA Entry point offset (unsigned)

6 (X'06') 1 PMARA_ATR Attribute bytes (character)

6 (X'06') 1 PMARA_ATR1 First attribute byte (bitstring)

452 DFSMS/MVS V1R4 Program Management

 Data Areas

Figure 202 (Page 2 of 2). Alias in Unformatted Form. Used only as input to the PUT function.

Offset
Length or
Bit Pattern Name Description

6 (X'06') 1 PMARA_FTB2 Alternative name for flags byte. These flags must be
at the same offsets as the corresponding flags in
PDS2FTB2 declared by macro IHAPDS. (bitstring)

xxxx - Reserved

.... 11.. PMARA_AMD Alias entry addressing mode. If B'00', AMODE is 24.
If B'10', AMODE is 31. If B'11', AMODE is ANY.

.... ..xx - Reserved

7 (X'07') variable PMARA_END End of alias entry section (character)

 Appendix K. Data Areas 453

 Data Areas

454 DFSMS/MVS V1R4 Program Management

 Fast Data Acess

Appendix L. IEWBFDA—Fast Data Access

This appendix contains General-use Programming Interface and Associated Guid-
ance Information.

This appendix describes IEWBFDA (Fast Data Access), a service which allows you
to more efficiently obtain module data from a program object.

Using the Fast Data Access Service
IEWBFDA, the fast data access service, allows vendor-and user-written applications
to obtain module data from a program object more efficiently. This service provides
read-only access to all data classes, and returns class data in a format identical to
that returned by the general API function GETData. IEWBFDA provides this
service from any language which supports the required data types.

To allow for the fact that more data may be present than can fit in the caller's buffer
and to allow for multiple calls against the same module, this service supports
chaining of calls. A module token (MTOKEN) is created on the first call and
returned to the caller. A HOLD option instructs the binder not to release files, DIV
maps and other resources before returning to the caller. On the second and sub-
sequent calls, the caller passes the MTOKEN to the service and is assured of con-
tinuing from the last call. On the last or only call of the set, HOLD=N should be
specified or defaulted, causing all resources to be released.

IEWBFDA replaces the functions of STARTDialog, CREATEWmod, INCLUDE,
GETData, DELETEWmod and ENDDialog, all in a single function call. Internal
binder structures (for example, workmod) are not created. The program object is
mapped into storage and the requested data reformatted into the caller's buffer
directly, thus saving most of the overhead associated with maintaining a dialog.

There are some restrictions on the use of this service. Only binder program objects
residing in a PDSE program library are supported; load modules, object modules
and program objects located in an OpenEdition file system file are not. Data can
be accessed by element (class-section) or by class; greater selectivity, such as that
provided by GETE, are not supported. Finally, data is read only. No update capa-
bility is provided.

 Environment
Your program's environment must have the following characteristics before invoking
the service:

� Enabled for I/O and external interrupts
� Holds no locks
� In task control block (TCB) mode
� With PSW key equal to the job step TCB key
� In primary address space mode
� In 31-bit addressing mode
� In either supervisor or problem program state

All requests are synchronous. The service returns control to your program after the
completion of the requested service. Services may not be requested in cross-
memory mode.

 Copyright IBM Corp. 1991, 1997 455

 Fast Data Acess

All addresses passed to the macro in the form of parameters must be valid 31-bit
addresses.

The syntax of the IEWBFDA macro is:

label
Optional symbol. If present, the label must begin in column 1.

ENTRYPNT=entry_point —RX-type address or register (3-12)
Specifies the name of a 4-byte variable which contains the entry point location
of the IEWBFDA module. If this location is known prior to the first call of the
fast data access service, then the use of such value by this parameter may
save the implied processing overhead of attempting to load the module into
storage.

MTOKEN=token —RX-type address or register (3-12)
Specifies the name of an 8-byte variable which contains the Module Token
established by the binder. This token should be initialized to binary zero before
the first call of the set.

RETCODE=retcode —RX-type address or register (3-12)
Specifies the name of a fullword integer variable which receives the completion
code returned by the binder.

RSNCODE=rsncode —RX-type address or register (3-12)
Specifies the name of a 4-byte hexadecimal string variable which receives the
reason code returned by the binder.

EPTOKEN=eptoken —RX-type address or register (3-12)
Specifies the name of an 8-byte variable which contains the EPTOKEN
received from MVS contents supervisor by means of the CSVQUERY macro.
EPTOKEN is required to locate the correct copy of a module in a PDSE
program library, when the module has already been loaded into virtual storage
by loader services.

DDNAME=ddname —RX-type address or register (3-12)
Specifies the name of an 8-byte character string variable which contains the
ddname of the library to be accessed. Member name should not be specified
on the JCL.

[label] IEWBFDA ENTRYPNT=xentry point
,MTOKEN=mtoken
,RETCODE=retcode
,RSNCODE=rsncode
{,EPTOKEN=eptoken|
 ,DDNAME=ddname,MEMBER=member|
 ,DCBPTR=dcbptr,DEPTR=deptr}
,CLASS=class
[,SECTION=section]
,AREA=buffer
,CURSOR=cursor
,COUNT=count
,HOLD={N|Y}
[,DELETE={N|Y }]
[,LOADFAIL= loadfail]
,MF={S|L|(E,{(3-12)|address)}}

456 DFSMS/MVS V1R4 Program Management

 Fast Data Acess

DCBPTR=dcbptr —RX-type address or register (3-12)
Specifies the name of a 4-byte pointer variable containing the address of a
DCB which represents a PDSE program library. The DEPTR parameter is
required if DCBPTR is specified.

Note that the DCB must be OPENed prior to the invocation of the service, and
its parameters must be: DSORG=PO,MACRF=(R).

MEMBER=member —RX-type address or register (3-12)
Specifies the name of a 1024-byte character string variable which contains the
member name or alias of the library member to be accessed. Required if
DDNAME has been specified.

SECTION=section —RX-type address or register (3-12)
Specifies the name of a 1024-byte character string variable containing the
name of the section to be accessed. This is an optional parameter, and is
default to a concatenation of all sections in the specified class.

CLASS=class —RX-type address or register (3-12)
Specifies the name of a 16-byte character string variable containing the class
name of the required data.

AREA=buffer —RX-type address or register (3-12)
Specifies the name of a standard buffer which receives the data. See

| Appendix J, “Binder API Buffer Formats” on page 393 for buffer formats. The
| version level is specified with this keyword.

CURSOR=cursor —RX-type address or register (3-12)
Specifies the name of a fullword integer variable which indicates to the binder
the position (relative record or byte) in the buffer where processing is to begin.

COUNT=count —RX-type address or register (3-12)
Specifies the name of a fullword integer variable in which the binder can store
the number of bytes or entries returned in the buffer.

HOLD=N|Y —RX-type address or register (3-12)
Indicates whether or not more requests for data from this module follow. If Yes
is specified, DIV maps and acquired storage is not released, permitting
requests for additional data from the same module on subsequent calls. The
default is 'N'.

DELETE=N|Y —RX-type address or register (3-12)
Specifies if the IEWBFDA module is to be deleted The default is 'Y'.

If Yes is specified, or if HOLD=N is specified without DELETE being specified,
the module is deleted.

If Yes is specified, or if DELETE is not specified but HOLD=Y is specified, the
module is not deleted.

LOADFAIL= loadfail —RX-type address or register (3-12)
Specifies the name of a four-byte pointer containing the address of a user-
defined routine that gets control if the LOAD operation fails while attempting to
load the IEWBFDA module.

MF={S|L|(E,{(3-12)|address)}}
specifies the macro form required.

 Appendix L. IEWBFDA—Fast Data Access 457

 Fast Data Acess

S Specifies the standard form and generates a complete inline expansion of
the parameter list. The standard form is for programs that are not reenter-
able or refreshable, and for programs that do not change values in the
parameter list. The standard form is the default.

L Specifies the list form of the macro. This form generates an inline param-
eter list.

E Specifies the execute form of the macro. This form updates a parameter
and transfers control to the service routine.

address —RX-type address or register (3-12)
Specifies the address of the parameter list.

 Operation
You must specify the input source by one of the following:

� A DDNAME and a member name. DDNAME must refer to a PDSE program
library, and member name must be provided on the control statement, not in
the JCL.

� An EPTOKEN, which identifies a module currently in execution and known to
OS/390 contents supervisor. Modules in LINKLIST cannot be accessed by
means of EPTOKEN.

� A DCB pointer and a directory entry pointer. The DCB identifies an open
PDSE program library, and the directory entry identifies the library member.

If SECTION is omitted, the search operates against all sections as a single unit.
The order in which the sections are returned is the same as the order they occur in
the program object.

IEWBFDA moves data into the buffer until either the buffer is full or no more data
exists in the designated item(s). The COUNT parameter is set to the number of
records or bytes returned in the buffer.

Modifying the CURSOR value during sequential calls to IEWBFDA can cause an
error. On a subsequent call, if all parameters except CURSOR remain the same,
the request for the extraction of additional data at a different CURSOR is honored
as long as the modified CURSOR value falls within the range of records contained
by the last SECTION processed. Otherwise an error is returned.

For consistency with the binder API call GETData, IEWBFDA provides a mech-
anism for extracting program object data in the input format, or in another valid
format. For instance, if the input is a version 1 program object, you can request the

| data be returned in a version 1 or version 2 format. The default is version 3 format.
This is accomplished by passing a standard data buffer (see the AREA parameter)
where the version indicates the format of the data to be returned.

The buffer version should not be changed between consecutive calls to IEWBFDA
while attempting to extract the same data, as this can cause the program to read
the data inconsistently.

458 DFSMS/MVS V1R4 Program Management

 Fast Data Acess

 Error Handling
IEWBFDA does not provide error handling routines for logic failures caused by
input or environmental problems.

Return and Reason Codes
Return
Code

Reason
Code

Explanation

00 00000000 Normal completion.

04 10800001 Normal completion. Data was returned, and the buffer is full.
There may be additional data to retrieve.

04 10800002 Normal completion. Some data may have been returned in
the buffer, and an end-of-data condition was encountered.

08 10800010 The requested CLASS does not exist in the indicated program
object. No data was returned.

08 10800011 The requested SECTION does not exist in the indicated
program object. The request was rejected.

12 10800020 The program object identified by EPTOKEN could not be
located in physical storage. The request was rejected.

12 10800021 The specified MEMBER could not be found. The request was
rejected.

12 10800022 The buffer provided (AREA) is too small to contain even one
record of the specified CLASS. The request was rejected.

12 10800023 A required parameter was passed through a register value, but
the value of such register is zero. The request was rejected.

12 10800024 An incorrect module token (MTOKEN) was provided. The
request was rejected.

12 10800025 A buffer (AREA) with a negative length was provided. The
request was rejected.

12 10800026 The provided CLASS name is not valid. The request was
rejected.

12 10800027 The provided CURSOR value is either negative, or, if this was
a first or a subsequent call, it was altered by the caller of the
service so that the (new) value was not within the range of
records for the SECTION being processed. The request was
rejected.

12 10800028 The provided HOLD value is not one of the allowed values: 'Y'
or 'N'. The request was rejected.

12 10800029 The program is not a PM1, PM2, or PM3 level program object,
or anomalies were found in its structure. The request was
rejected.

12 1080002A The program object identified by the EPTOKEN has been
updated since it was last fetched. The service cannot process
it, since the extracted data would not be the same as the data
in physical storage. The request was rejected.

12 1080002B The program object identified by the EPTOKEN was fetched
by a product other than DFP and therefore it cannot be proc-
essed. The request was rejected.

 Appendix L. IEWBFDA—Fast Data Access 459

 Fast Data Acess

Return
Code

Reason
Code

Explanation

12 1080002C The data set identified by DDNAME could not be found, or the
system service (SVC99) encountered an error while verifying
the data set allocation. The request was rejected.

12 1080002D The specified DDNAME did not refer to a program object
library. The request was rejected.

12 1080002E An error occurred while trying to open the data set identified
by DDNAME. The request was rejected.

12 1080002F The acquisition of working storage was not successful. The
request was rejected.

12 10800030 An error was encountered while attempting to verify the pro-
vided EPTOKEN. (Service Involved: CSVQUERY). The
request was rejected.

12 10800031 An error was encountered while attempting to map the
program object onto a data space. The request was rejected.

12 10800032 An error was encountered while attempting to access the
directory entry for the program object being processed.
(Service Involved: DESERV). The request was rejected.

12 10800033 An error was encountered while attempting to acquire a data
space (Service Involved: DSPSERV). The request was
rejected.

12 10800034 An error was encountered while attempting to reference a data
space (Service Involved: ALESERV). The request was
rejected.

12 10800035 The supplied DCB, identified by DCBPTR, does not represent
a PDSE program object library. The request was rejected.

12 10800036 The supplied DCB, identified by DCBPTR, was not OPENed
prior to the service's invocation as required. The request was
rejected.

12 10800037 The supplied DCB, identified by DCBPTR, is OPEN but one or
both of the pertinent DCB parameters are not DSORG=PO
and MACRF=(R), as required. The request was rejected.

12 10800038 The supplied directory entry, identified by DEPTR, does not
represent a program object. The request was rejected.

12 10800039 The supplied buffer (AREA) has an incorrect version number
in its header, which disagrees with the version of the program
object being accessed. For example, the buffer version is '1',
but the program object is version '2'.

12 1080003A The supplied buffer (AREA) has an incorrect class name in its
header, which disagrees with CLASS name passed to the
service.

460 DFSMS/MVS V1R4 Program Management

 Fast Data Acess

 Parameter List
The address of the following parameter list must be passed in GPR 1:

Figure 203. IEWBFDA Parameter List

PARMLIST DS 0F
DC A(ENTRYPNT) Module Entry Point
DC A(MTOKEN) Module Token
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(EPTOKEN) EPTOKEN
DC A(DDNAME) DD name
DC A(MEMBER) Member name
DC A(DCBPTR) DCB pointer
DC A(DEPTR) Directory Entry pointer
DC A(CLASS) Class Name
DC A(SECTION) Section name
DC A(AREA) Standard data buffer
DC A(CURSOR) Starting Position
DC A(COUNT) Data Count
DC A(HOLD+X'80000000') Hold Flag

* Keyword Values
HOLD DC CL1'Y' Hold Flag

“Y” = YES
“N” = NO

 Appendix L. IEWBFDA—Fast Data Access 461

 Fast Data Acess

462 DFSMS/MVS V1R4 Program Management

 Abbreviations

The following abbreviations are defined as they are
used in the DFSMS/MVS library. If you do not find the
abbreviation you are looking for, see Dictionary of Com-
puting, New York: McGraw-Hill, 1994.

This list may include acronyms and abbreviations from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the Amer-
ican National Standards Institute, 1430 Broadway,
New York, New York 10018.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1).

A-con . A-type address constant.

ACS. Automatic class selection.

adcon . Address constant.

AMODE. Addressing mode.

APF. Authorized program facility

API. Application programming interface.

BLKSIZE . Block size

CCSID. Coded Character Set Identification

CESD. Composite external symbol dictionary.

CSECT. Control section.

DBCS. Double byte character set

DC. Downward compatible, define constant

DCB. Data control block.

DCBS. Data control block size.

DD. Data definition.

DSCB. Data set control block.

EOM. End of module.

ESD. External symbol dictionary.

GOFF. Generalized object file format.

OpenEdition . OpenEdition file system

IDR. Identification record.

JCL . Job control language.

KB . Kilobytes.

LRECL . Logical record length

MB. Megabytes.

PDS. Partitioned data set.

PDSE. Partitioned data set extended

PRV. Pseudoregister vector.

RECFM. Record format.

RLD. Relocation dictionary.

RMODE. Residence mode.

SMS. Storage Management Subsystem.

TCB. Task control block.

TSO. Time sharing option.

V-con . V-type address constant.

 Copyright IBM Corp. 1991, 1997 463

464 DFSMS/MVS V1R4 Program Management

 Glossary

The following terms are defined as they are used in the
DFSMS/MVS Library. If you do not find the term you
are looking for, see the IBM Dictionary of Computing,
New York: McGraw-Hill, 1994. This glossary might
include some terms from the IBM Dictionary of Com-
puting.

This glossary might also include terms and definitions
from:

The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the Amer-
ican National Standards Institute, 11 West 42nd
Street, New York, New York 10036.

The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC2/SC1).

A
| adata . Associated data. A collective term referring to
| the set of non-text, non-binder-defined data classes
| stored in the program object. ADATA is used by the
| language and binder products to save intermediate data
| which can be of later use by utilities, debugging rou-
| tines, etc.. ADATA is not required for execution or
| rebinding.

alias . An alternate name for a member of a partitioned
data set or PDSE.

alternate entry point . A load module or program
object alias for which the entry point is not the primary
entry point. Other program attributes can differ within a
defined alias from those of the primary entry point.

AMODE (addressing mode) . The attribute of a
program module that identifies whether the program
entry point can receive control in 24-bit addressing
mode, 31-bit addressing mode, or either.

attributes . See program module attributes.

automatic library call . The process by which the
binder resolves external reference by including addi-
tional members from the automatic call library.

B
bind . To combine one or more control sections or
program modules into a single program module,
resolving references between them, or to assign virtual
storage addresses to external symbols.

binder . The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in MVS

binder application programming interface . The set
of binder entry points that allow a calling program to
request specific binding and editing services individ-
ually.

binder batch interface . The set of binder entry points
that allow it to perform binding and loading services.

binder dialog . A sequence of calls to the binder appli-
cation programming interface to accomplish a specific
task.

binder processing intent . The intended use of a
binder workmod, specified at the time the workmod is
created. The ACCESS processing intent indicates that
the workmod will be used to copy or access program
module data and that no binding will be requested. The
BIND processing intent indicates that the workmod will
be used to collect and edit program module data, and
then bound and either saved or loaded into virtual
storage for execution.

C
class . A cross section of program module data that is
consistent in format and content.

Coded Character Set Identifier (CCSID) . A 16-bit
number that identifies a specific encoding scheme iden-
tifier, character set identifiers, code page identifiers, and
additional coding required information. The CCSID
uniquely identifies the coded graphic character repre-
sentation used.

common area . A control section used to reserve a
virtual storage area that can be referred to by other
modules.

common section . Another term for common area.

CSECT (control section) . The part of a program
specified by the programmer to be a relocatable unit, all

 Copyright IBM Corp. 1991, 1997 465

elements of which are to be loaded into adjoining virtual
storage locations.

D
DFSMSdfp . A DFSMS/MVS functional component or
base element of OS/390, that provides functions for
storage management, data management, program man-
agement, device management, and distributed data
access.

DFSMS/MVS. An IBM System/390 licensed program
that provides storage, data, and device management
functions. When combined with MVS/ESA SP Version
5 it composes the base MVS/ESA operating environ-
ment. DFSMS/MVS consists of DFSMSdfp,
DFSMSdss, DFSMShsm, and DFSMSrmm.

dialog . See binder dialog.

dialog token . A doubleword token used as an identi-
fier for a specific binder dialog.

directory entry . A logical record in a program library
directory that contains a member or alias name, a
pointer to that member, and attributes of that member.

| dynamic link library . A file containing executable
| code and data bound to a program at load time or run
| time. The code and data in a dynamic link library can
| be shared by several applications simultaneously.

E
element . See workmod element.

entry point . The address or label of the first instruc-
tion executed on entering a computer program. A com-
puter program may have a number of different entry
points. The primary entry point is also called the main
entry point.

exclusive reference . A call from a section in one
overlay path to one in a different path. Because an
exclusive call causes the calling section to be overlaid,
return to the calling section is not possible.

exclusive segments . Segments in the same region of
an overlay program that are not in the same path.
Exclusive segments cannot be in virtual storage simul-
taneously.

external name . A name that can be referred to by any
control section or separately assembled or compiled
module; that is, a name that is defined in another
module.

external reference . A reference to a symbol defined
as an external name in another program or module.

external symbol . A control section name, entry point,
common area name, pseudoregister, or external refer-
ence that is defined or referred to in a particular
module.

H
hierarchical file system (HFS) data set . A data set
that contains a POSIX-compliant hierarchical file
system, which is a collection of files and directories
organized in a hierarchical structure, that can be
accessed using the OpenEdition MVS facilities.

I
IEWFETCH. See program fetch.

inclusive reference . A call from a segment in storage
to an external symbol in a segment in the same path.
An inclusive call does not cause overlay of the calling
segment.

inclusive segments . Segments in the same region of
an overlay program that are in the same path. Inclusive
segments can be in virtual storage simultaneously.

| instantiation . The creation of an object of a particular
| class that conforms

intent . See binder processing intent. to the object
type for that class.

L
load module . An executable program stored in a parti-
tioned data set program library. See also program
object.

M
module map . A listing of a program module showing
the length and module offset of each section.

MVS/ESA. An MVS operating system environment that
supports ESA/390.

MVS/ESA SP. An IBM licensed program used to
control the MVS operating system. MVS/ESA SP
together with DFSMS/MVS compose the base
MVS/ESA operating environment. See also OS/390.

466 DFSMS/MVS V1R4 Program Management

O
object module . A collection of one or more control
sections produced by an assembler, compiler, or other
language translator and used as input to the binder or
linkage editor.

overlay entry table . A special section created by the
binder or linkage editor at the end of an overlay
segment which permits branching into an overlay
segment in a different path.

overlay path . All of the segments in an overlay struc-
ture between a given segment and the root segment.

overlay program . A program module format for which
some control sections occupy the same virtual storage
addresses as others. The sections are organized into
overlay segments, which are brought into storage as
needed during execution and then overlaid by other
segments when no longer needed.

overlay region . In an overlay structure, a contiguous
area of virtual storage where segments can be loaded
independently of paths in other regions. Only one path
within a regions can be in virtual storage at any given
time.

overlay segment . The smallest unit of an overlay
program that can be separately loaded by the overlay
supervisor. An overlay segment consists of one or
more sections and is always loaded at the same offset
relative to the start of the program module.

overlay segment table . A table located at the begin-
ning of the root segment of an overlay program that
describes the segments of the program.

P
page-map . A technique for loading program objects
into virtual storage. The pages of a program object are
brought in when a page fault occurs.

part . A named subdivision of an MRG class, used to
describe a pseudoregister or external data item. Parts
can be shared by all sections in the bound program
object.

partitioned data set (PDS) . A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

partitioned data set extended (PDSE) . A system-
managed data set that contains an indexed directory

and members that are similar to the directory and
members of partitioned data sets. A PDSE can be
used instead of a partitioned data set.

PM1. The version of program management compo-
nents which is delivered in DFSMS/MVS Version 1
Release 1 and Release 2.

PM2. The version of program management compo-
nents which is delivered in DFSMS/MVS Version 1
Release 3.

| PM3. The version of program management compo-
| nents which is delivered in DFSMS/MVS Version 1
| Release 4.

primary name . The name contained in the primary
directory entry for a library member, used for creating,
copying, and deleting the member. A library member
always has one primary name and zero or more
aliases.

processing intent . See binder processing intent.

program fetch (IEWFETCH) . A program that prepares
programs for execution by loading them at specific
storage locations and readjusting each address con-
stant.

program library . A partitioned data set or PDSE that
always contains named members.

program management . The task of preparing pro-
grams for execution, storing the programs, load
modules, or program objects in program libraries, and
executing them on the operating system.

program management binder . See binder.

program module . The output of the binder. A collec-
tive term for program object and load module.

program module attributes . The characteristics of a
program module that are stored in the program module
directory entry, and are used to control the loading,
rebinding, and other processing of the module.

program object . All or part of a computer program in
a form suitable for loading into virtual storage for exe-
cution. Program objects are stored in PDSE program
libraries and have fewer restrictions than load modules.
Program objects are produced by the binder.

pseudoregister . A 4-byte external dummy section
used to provide global addressability to dynamically
allocated control blocks, data areas, and other
resources.

 Glossary 467

R
reenterable . The reusability attribute that allows a
program to be used concurrently by more than one
task. A reenterable module can modify its own data or
other shared resources, if appropriate serialization is in
place to prevent interference between using tasks. See
reusability.

refreshable . The reusability attribute that allows a
program to be replaced (refreshed) with a new copy
without affecting its operation. A refreshable module
cannot be modified by itself or any other module during
execution. See reusability.

reusability . The attribute of a module or section that
indicates the extent to which it can be reused or shared
by multiple tasks within the address space. See
refreshable, reenterable, and serially reusable.

RMODE (residence mode) . The attribute of a program
module that identifies where in virtual storage the
module is to reside (above or below 16 MB).

root segment . The first segment of an overlay
program. This segment remains in virtual storage at all
times during the execution of the program

S
| section . A generic name given to the smallest unit of
| a program which can be individually manipulated during
| building. Sections are named by the programmer, and
| can be moved, replaced, or deleted during link-editing
| or binding.

segment . See overlay segment. Class segment is a
continuous unit of text in a multiple part program object,
consisting of one or more text classes, which can be
separately loaded by the loader under control of
assigned loader attributes.

serially reusable . The reusability attribute that allows
a program to be executed by more than one task in
sequence. A serially reusable module cannot be
entered by a new task until the previous task has
exited. See reusability.

Storage Management Subsystem (SMS) . A
DFSMS/MVS facility used to automate and centralize
the management of storage. Using SMS, a storage
administrator describes data allocation characteristics,
performance and availability goals, backup and
retention requirements, and storage requirements to the
system through data class, storage class, management
class, storage group, and ACS routine definitions.

system data . The data sets required by MVS or its
subsystems for initialization and control.

system status index (SSI) . A field in the directory
entry of a program module which can be used to record
current maintenance status.

T
temporary data set . An uncataloged data set whose
name begins with & or &&, that is normally used only
for the duration of a job or interactive session. Contrast
with permanent data set.

transportable program . A program object that has
been converted into a nonexecutable form for transfer
to other systems.

true alias . A program alias for which the entry point is
the same as the primary entry point.

W
workmod . A logical data structure in binder working
storage used to assemble or otherwise operate on a
program module.

workmod element . A subdivision of workmod data
which is identified by a section and class name. The
item is the normal unit of data transfer in binder, GET
and PUT data calls.

workmod item . A subdivision of workmod data identi-
fied by a section and class name.

workmod token . A doubleword token used to identify
a specific workmod in binder storage.

468 DFSMS/MVS V1R4 Program Management

 Index

Special Characters
$PRIVATE 276, 293
**GO 117

A
a-con

See adcon
AC option

purpose 107
syntax 107

access intent
definition 465
specifying 163, 199
valid function calls 136

adata
definition 465

adcon (address constant)
relocating 21
setting hi-order bit 114
using 13

ADDA (add alias function)
parameter list 152
return and reason codes 152
syntax 150

address constant
See adcon

addressing mode
See AMODE

alias
definition 465
deleting 6
description 71
linkage editor maximum 265
specifying 71, 151

ALIAS statement
example 73
linkage editor differences 265
purpose 71
syntax 71

ALIASES Option 107
purpose 107
syntax 107

ALIGN2 option
purpose 108
syntax 108

aligning sections
2KB boundary 108
4 KB boundary

with ALIGNT function call 152
4K boundary

with ORDER statement 90

aligning sections (continued)
4KB boundary

with ORDER statement 66
with PAGE statement 93

ALIGNT (align text function)
parameter list 153
return and reason codes 153
syntax 152

alternate entry point
definition 465
specifying 71, 151
specifying AMODE 87, 151

ALTERW (alter workmod function)
parameter list 157
return and reason codes 156
syntax 154

AMASPZAP
IDR data 400, 411
operations on program modules 7

AMBLIST
listing program and object modules 7

AMODE (addressing mode)
default value 24
definition 465
description 22
for overlay programs 25, 322
hierarchy 24
linkage editor differences 261
specifying 87, 108, 151
valid with RMODE 24
values 23

AMODE option
purpose 108
syntax 108

APF
code, assigning 107

API (application programming interface) 127—235
invoking from high-level languages 141
setting invocation environment 140
setting options 137
using IEWBIND macro 149
using IEWBUFF macro 144
writing user exit routines 211, 218

API buffer formats 393
AMASPZAP IDR data 400, 411
binder IDR data 397, 408
binder name list 403, 414
content extent list 403, 415
ESD entry 395, 405, 424
internal symbol table 402, 413
language processor IDR data 398, 409
module map 416

 Copyright IBM Corp. 1991, 1997 469

API buffer formats (continued)
PARTINIT entry 430
RLD entry 401, 411, 427
text data buffer 402, 413
user IDR data 399, 410

API call
version 130

application programming interface
See API

assigning authorization codes 97, 107
assigning load module block size

by binder 34
with DC option 111
with DCBS option 111
with MAXBLK option 116

assigning program module addresses 21
assigning SSI data 98, 123
ATTACH macro

invoking
batch loader 263
binder 39
linkage editor 263

attribute
See program module attribute

authorization code 97, 107
authorized program facility

code, assigning 107
AUTOCALL

description 73
requesting 73

AUTOCall (API function)
parameter list 159
return and reason codes 159
syntax 157

AUTOCALL statement
example 74
purpose 73
syntax 73

autocall, incremental 51
automatic library call

BINDW function 160
defining SYSLIB 33, 52
definition 465
resolving external references 50
specifying option 205
suppressing 54, 108
using LIBRARY statement 53, 85
using NCAL option 108

B
batch loader

data set requirements 262
ddname list 264
description 5
differences from binder 261

batch loader (continued)
incompatible options 268
interpreting output 276
invoking

from a program 263
in batch 262
under TSO 264

names 262
storage requirements 271
unsupported binder options 267
virtual storage requirements 271

bind
definition 465

bind intent
definition 465
specifying 163, 199
valid function calls 136

binder (program management binder)
description 2
input and output

sources 17, 44
invoking

from a program 39
in batch 29
under TSO 41
with the API 127

JCL example 29
loading programs 22
program names 30, 39, 142
specifying options 101
specifying virtual storage size 31

binder application programming interface
definition 465
description 127—235
example 225

binder batch interface
definition 465
invoking 29

binder dialog
definition 465
description 127
starting 210
summary 130
terminating 168

binder fill character
specifying fill character 114

binder function call
See also individual function calls
overview 130
summary 133

binder invocation environment 140
binder options 101—126

See also individual options
including from a data set 117
summary 103
syntax conventions 101

470 DFSMS/MVS V1R4 Program Management

binder options (continued)
with the API 137

using SETO function 208
using STARTD function 210

binder output
controlling content 115
controlling message display 117
interpreting 291
requesting cross-reference table 126
requesting module map 116
sending messages to SYSTERM 124
specifying lines per page 115
suppressing SYSLOUT 119

binder processing intent
associating with workmod 136
definition 465
description 128

binder user exit
execution environment 218
message exit routine 219
save exit reason codes 220
save exit routine 219
specifying with STARTD function 211

binder, level, selecting 109
binding programs

See creating executable programs
BINDW (bind workmod function)

parameter list 162
return and reason codes 161
syntax 159

branch instruction
in overlay programs 326

buffer operations
allocating 146
initializing 147
mapping 147
releasing 146

C
call library

for linkage editor and batch loader 263
CALL macro

in overlay programs 325
CALL option

purpose 108
syntax 108

CALL statement
in overlay programs 325

CALLER identification
specifying 212

CALLERID option
purpose 138

CALLIB option
purpose 138
specifying 208, 212

case
specifying, STARTD 212

CASE option
purpose 109
syntax 109

cataloged procedure 37
CESD (composite external symbol dictionary)

description 18
CESD record

format 354
CHANGE statement

example 59, 75
linkage editor differences 265
purpose 59
syntax 74

changing external symbols 58, 74, 155
class

definition 465
description 128
names 128

class data, obtaining 455
classes 10

parts, of text classes 11
coding JCL 29
coding the IEWBIND macro 149
common area

aligning
example 66
with ALIGNT function call 153
with ORDER statement 66, 90
with PAGE statement 93

blank or named 15
changing 74, 155
data classes 128
definition 465
deleting 63, 155
description 15
encoding the name 22
expanding 155
in overlay programs 322
inserting 84, 186
ordering 64, 90, 191
replacing 62, 155

common areas 11
common section

See also common area
definition 465

communicating between overlay segments 325
COMPAT option

default 110
purpose 109
syntax 109

compatibility, level 109
composite external symbol dictionary

See CESD

 Index 471

continuing a statement
binder 69
linkage editor 265

control case
specifying, STARTD 212

control section
See CSECT

control statement
continuing

binder 69
linkage editor 265

placement 58, 71
precedence 71
primary input 45
purpose 69
reference 69—99
separate data set 46

control statements
LE/370 prelinker functions 26
syntax conventions 69

control/RLD dictionary record
See also control/RLD record write
format 358

controlling message display 117
converting program modules 6
COPYGRP

and long names 6
copying program modules 6
CREATEW (create workmod function)

parameter list 164
return and reason codes 164
syntax 163

creating executable programs 9, 17
diagram 2, 10

creating overlay programs 84, 91, 118, 305—328
cross-reference table

example
binder 299
linkage editor 276

interpreting 298
requesting 126

CSECT (control section)
aligning

with ALIGNT function call 153
with ORDER statement 90
with PAGE statement 93

automatic replacement
in overlay programs 324

changing 74, 155
data classes 128
definition 465
deleting 95, 155
dependency 306
expanding 155
inserting 84, 186
name

encoding 22

CSECT (control section) (continued)
ordering 90, 191
positioning in overlay programs 318
replacing

with ALTERW function call 155
with REPLACE statement 95

CSECT (section)
aligning

example 66
with ORDER statement 66

automatic replacement 60
deleting 63

example 64
editing 57—67
ordering 64

example 66
replacing

description 60
example 60, 63
with REPLACE statement 62

CSECT identification record (IDR)
formats 360

CSECT name
encoding 22

CSECTs 10

D
data

storing, using PUTD 192
data class, obtaining 455
data set

additional includes 36
automatic library call 33
call library 52
cataloged procedure 37
concatenated

binder 49
linkage editor and batch loader 263

diagnostic output 33
included for linkage editor and batch loader 262
primary input 32

defining 43
primary output 34
required 32
side file output 35
specifying in STARTD function 211
terminal diagnostic output 35

DBCS (double byte character set)
shift-in and shift-out codes 22

DC option
purpose 111
syntax 111

DCBS option
purpose 34
syntax 111

472 DFSMS/MVS V1R4 Program Management

DD statement
See also individual DD statements
allocating under TSO 41
alternative ddnames 40
cataloged procedure 37
coding for batch 29
description 31
required 32

ddname list
for batch loader 264
for linkage editor 263

defaults, installation 102
DELETEW (delete workmod function)

parameter list 165
return and reason codes 165
syntax 164

deleting external symbols
description 63
differences with linkage editor 265
with ALTERW function call 155
with REPLACE statement 95

deleting program modules and aliases 6
deleting sections 95, 155
dialog

See binder dialog
dialog token

definition 466
description 127
obtaining 211

directory entry
contents 17
definition 466

DLLRename
return and reason codes 168

DLLRename (rename DLLs function)
syntax 166

DLLRename (substitute names function)
parameter list 168

double byte character set
See DBCS

downward compatibility 111
specifying 212

dumping program modules 7
 DYNAM option

syntax 112
dynamic link library

DLL names inside IMPORT control statements 202

E
 EDIT option

purpose 112
syntax 112

element
definition 466

END object module record 346
ENDD (end dialog function)

parameter list 169
return and reason codes 169
syntax 168

entry name
changing 74, 155
deleting 155
deleting duplicate 60
encoding 22
specifying 75, 151

entry point
default 76
definition 466
deleting 63, 95
precedence 76
replacing 95, 155
specifying 58, 75, 112
specifying AMODE 23

with ADDA function call 151
with AMODE option 108
with MODE statement 87

ENTRY statement
example 76
linkage editor differences 265
purpose 75
syntax 75

EP option
purpose 112
syntax 112

ESD (external symbol dictionary)
description 15
program modules 18
retrieving 172

ESD object module record 343
exclusive call

authorizing 126, 322
exclusive reference

definition 466
description 311

exclusive segment
definition 466
description 310

EXEC statement
coding in batch 30
PARM field 30, 31
PGM parameter 30
REGION parameter 31
specifying with JCL 31

executing overlay programs 312
executing the binder

See invoking the binder
exits user

specifying with STARTD function 211
EXITS, binder option

purpose 113

 Index 473

EXITS, binder option (continued)
specifying 113
syntax 113

exits, user 218
EXPAND statement

example 77
linkage editor differences 266
purpose 76
syntax 76

expanding sections 76, 266
with not-editable attribute 112

external label
description 15

external name
definition 466
encoding 22
using 13

external reference
changing 74, 155
definition 466
deleting 63, 95
description 15
replacing 95, 155
resolving 13, 21, 50
suppressing resolution 54

external symbol
changing 58, 74, 155

example 59
creating hidden aliases 107
definition 466
deleting 63, 95, 155
description 13
duplicate 58
replacing 95, 155
warning on delete 60

external symbol dictionary
See ESD

external symbols
importing 80
renaming 94

F
fast data access 455

API 7
fast data access API

description 7
FETCHOPT option

default 114
description 5
syntax 113

FILL option
default 114
purpose 114
syntax 114

formats
object module 347, 361

formats, record 352—360
FREEBUF function

syntax 146

G
GETBUF function

syntax 146
GETD (get data function)

parameter list 172
return and reason codes 171
syntax 170

GETE (get ESD data)
parameter list 176
return and reason codes 175
syntax 172

GETN (get names function)
parameter list 178
return and reason codes 178
syntax 176

H
hi-order bit setting 114
hidden alias

definition 107
displaying 107

HL assembler
object module formats 361

HOBSET option
default 114
purpose 114
syntax 114

I
identification record

See IDR
IDENTIFY statement

example 80
linkage editor differences 266
purpose 78
syntax 78

IDR (identification record)
DBCS encoding 79
listing 80
replacing 60
size limitation 79
specifying 78
types of records 16

IEBCOPY
operations on program modules 6

IEHLIST
listing program library directories 6

474 DFSMS/MVS V1R4 Program Management

IEHPROGM
operations on program modules and aliases 6

IEWBFDA
service 455

IEWBFDA (obtain module data)
return and reason codes 459

IEWBFDFA (obtain module data)
parameter list 461

IEWBIND macro
coding 149
coding lists 212
function summary 133
parameter list 149
return and reason codes 142

IEWBUFF macro
coding 144
function summary 145

IEWFETCH
See program fetch

IEWTFMT macro 334
IEWTPORT (transport utility) 6

description 6
errors 332
examples 331
JCL 329
messages 332
return codes 332

IMPORT (import variable function)
parameter list 180
return and reason codes 180
syntax 178

IMPORT statement
example 82
syntax 80

import variable
with IMPORT function call 178

imported and exported symbol table
interpreting 299

importing symbols 80
INCLUDE (include module function)

parameter list 186
return and reason codes 184
syntax 180

INCLUDE statement
coding DD statement 36
creating overlay programs 319
example 83, 84
linkage editor differences 262
processing nested 47
purpose 46
syntax 82

including input 46
including modules 82, 180
inclusive reference

definition 466
description 311

inclusive segment
definition 466
description 310

incremental autocall 51
specifying 73

INITBUF function
syntax 147

initializing buffers 147
input conventions 351
input event log

description 291
example 292

input record types
formats 352—360

INSERT statement
creating overlay programs 320
example 85
purpose 84
syntax 84

inserting sections 84, 186
INSERTS (insert section function)

parameter list 187
return and reason codes 187
syntax 186

inspecting program modules 7
installation defaults 102
intent

See binder processing intent
interpreting output

batch loader 276
binder 291—304
linkage editor 272

invoking binder cataloged procedure
LKED procedure 37
LKEDG procedure 38

invoking the API 127
from high-level languages 141
setting invocation environment 140
with IEWBIND macro 149
with IEWBUFF macro 144

invoking the batch loader
from a program 263
in batch 262
under TSO 264

invoking the binder
from a program 39, 127
in batch 29—39
under TSO 41
with the API 127

invoking the linkage editor
from a program 263
in batch 262
under TSO 264

item
See workmod item

 Index 475

J
JCL (job control language)

coding
binder 29
IEWTPORT 329

example 29
EXEC statement 30
PARM field 30, 31
passing modules 45

job control language
See JCL

L
LET option

creating overlay programs 322
purpose 115
syntax 115

LIBRARY statement
coding DD statement 36
example 53, 87
purpose 53
syntax 85

LINECT option
default 115
purpose 115
syntax 115

LINK command 41
LINK macro

invoking
batch loader 263
binder 39
linkage editor 263

link pack area
listing 7
searching 51
suppressing search 119
with RES option 160

link-editing programs
See creating executable programs

linkage editor
data set requirements 262
ddname list 263
description 5
differences from binder 261
incompatible options 268
interpreting output 272
invoking

from a program 263
in batch 262
under TSO 264

names 262
unsupported binder options 267
virtual storage requirements 268

LIST option
default 116
purpose 115
syntax 115

listing IDR data 80
listing program and object modules 7
listing program library directories 6
LNAME option

purpose 139
specifying 208, 212

LOAD macro
invoking

batch loader 263
binder 39, 142
linkage editor 263

issued by IEWBIND macro 141
load module

See also program module
assigning block size 34, 111, 116
definition 466
description 9
downward compatibility 111
size limitation 77
structure 14

loader (program management loader)
description 4
relationship with program fetch 4

LOADGO command 41
loading programs 22

diagram 2
syntax of PARM field 31
with the batch loader 261
with the binder 30
with the binder API 188

loading the binder 141
LOADW (load workmod function)

parameter list 190
return and reason codes 189
syntax 188

long-symbol cross-reference table
description 303

M
MAP option

linkage editor differences 267
purpose 116
syntax 116

MAPBUF function
syntax 147

mapping buffers 147
marking an external symbol as an alias 107
marking program modules executable 115
MAXBLK option

purpose 116
syntax 116

476 DFSMS/MVS V1R4 Program Management

maximum line count
specifying 212

message exit routine 219
message level

specifying by severity 212
message summary report

description 304
messages

batch loader 277
linkage editor 272

migration
linkage editor to binder 237

mixed case 109
MODE statement

example 88
purpose 87
syntax 87

MODLIB option
purpose 139
specifying 208, 212

module
description 9
editing 57
passing from prior job 45
passing from prior job step 45

module data, obtaining 455
module map

definition 466
example

batch loader 277
binder 293
linkage editor 275

interpreting 292
requesting 116

MSGLEVEL option
default 117
purpose 117
syntax 117

N
NAME option

default 117
purpose 117
syntax 117

NAME statement
example 90
linkage editor differences 266
purpose 88
syntax 88

name, long restriction 6
naming program modules 88, 117, 139
NCAL option

definition 54
syntax 108

never-call option
See also automatic library call
definition 54
SETL function 205
specifying 85, 108
with LIBRARY statement 54

not-editable attribute 112

O
object module

as primary input 44
definition 467
description 9
formats 347, 361
including 82, 180
input conventions 341
record formats 342
structure 14

OL option
purpose 117
syntax 117

only-loadable attribute 117
OpenEdition

creating program object in 20
OpenEdition files

set attributes 118
operation summary

description 300
example 301

OPT (set options)
control statement, binder 98
description 98

options
STARTD 212

Options data set 117
coding in batch 33
description 33

options not supported by linkage editor 267
OPTIONS option

purpose 117
syntax 117

options, defaults 102
options, setting, SETOPT 98
ORDER statement

example 66, 91
linkage editor differences 266
purpose 64, 66
syntax 90

ordering sections
example 64
with linkage editor 266
with ORDER statement 90
with ORDERS function call 191

ORDERS (order section function)
parameter list 192

 Index 477

ORDERS (order section function) (continued)
return and reason codes 192
syntax 191

output header
description 291

overlay entry table
contents 313
definition 467

overlay path
definition 467
description 305

overlay program
AMODE and RMODE attributes 322
communicating between segments 325
creating 91, 316
definition 467
designing 305
executing 312
INSERT statement 84
inserting sections 84, 186
INSERTS (insert section function) 186
length 308
multiple region 314
OVERLAY statement 91
OVLY option 118
single region 306
special considerations 322
STARTS (start segment function) 216
virtual storage requirements 324

overlay region
assigning an origin 91, 217, 317
definition 467
description 306

overlay segment
assigning an origin 91, 217, 309
definition 467
dependency 308
description 305
determining 306

overlay segment table
definition 313, 467

OVERLAY statement
creating overlay programs 316
example 92
purpose 91
syntax 91

OVLY option
purpose 118
syntax 118

P
page alignment

2KB boundary 108
4K boundary

with ORDER statement 90

page alignment (continued)
4KB boundary

with ALIGNT function call 152
with ORDER statement 66
with PAGE statement 93

PAGE statement
example 66, 93
purpose 66
syntax 93

page-map
definition 467
specifying options 113

parameter list 149
See also individual IEWBIND function calls
setting null values 150

PARM field
cataloged procedure 37
precedence 71
specifying binder options 101
syntax conventions 101
syntax for loading 31

PARMS option
specifying, STARTD 212

part
definition 467

part reference
description 15
sharing between sections 15

partitioned data set
See PDS

partitioned data set extended
See PDSE

parts, of text classes 11
passing lists to the binder API 212
path

See overlay path
PATHMODE option

purpose 118
syntax 118

PDS (partitioned data set)
containing primary input 44

PDS data area map
on entry to STOW 433
returned by BLDL 439

PDSE (partitioned data set extended)
containing primary input 44

Performing incremental autocall 73
PM1

definition 467
PM2

definition 467
PM3

definition 467
prelinker functions 26
primary input

contents 44

478 DFSMS/MVS V1R4 Program Management

primary name
definition 467

PRINT
enable file 212

PRINT option
purpose 119
syntax 119

private code
description 15

processing intent
See binder processing intent

program fetch
definition 467
relationship with program management loader 4

program library
as automatic call library 52
as primary input 44
as primary output 30
definition 467

program management
components 1
services 1

program management binder
See binder

program management loader
See loader

program management transport utility
See IEWTPORT

program management utilities
See utilities

program module
AMODE and RMODE attributes 22
as primary input 44
as primary output 30
assigning addresses 21
assigning authorization code 97, 107
assigning SSI data 98
attributes 17
contents 18
definition 467
description 9
dumping 7
including 82, 180
inspecting 7
marking executable 115
saving 201
setting options, SETOPT 98
specifying a name 88, 117
specifying RMODE 87, 121
updating SSI data 7

program module attribute
definition 467
not-editable 112
not-executable 115, 123, 268
only-loadable 117
reusability 120

specifying for linkage editor 267

program module attribute (continued)
where stored 17, 23

program object
See also program module
creating in OpenEdition file 20
description 3, 9
size limitation 77
structure 14

pseudoregister
changing 74, 155
CXD (cumulative length) 16
definition 467
deleting 63, 95, 155
description 16
encoding the name 22
replacing 95, 155

PUTD (put data function)
parameter list 197

PUTD (put data)
return and reason codes 196
syntax 192

R
reason codes

ADDA (add alias function) 152
ALIGNT (align text function) 153
ALTERW (alter workmod function) 156
AUTOCall (API function) 159
binder 280
BINDW (bind workmod) 161
CREATEW (create workmod function) 164
DELETEW (delete workmod function) 165
DLLRename 168
ENDD (end dialog function) 169
GETD (get data function) 171
GETE (get ESD function) 175
GETN (get names function) 178
IEWBFDA (obtain module data) 459
IEWBIND macro 142
IMPORT (import variable function) 180
INCLUDE (include module function) 184
INSERTS (insert section function) 187
LOADW (load workmod function) 189
ORDERS (order section function) 192
PUTD (put data function) 196
RENAME 198
RESETW (reset workmod function) 200
save user exit 220
SAVEW (save workmod function) 203
SETL (set library function) 207
SETO (set option function) 209
STARTS (start segment function) 217

record
formats 352—360

 Index 479

record formats, object module 347, 361
reenterable attribute

definition 468
description 120
specifying 120

refreshable attribute
definition 468
description 120
specifying 120

releasing buffers 146
relocation

definition 21
relocation dictionary

See RLD
RENAME

return and reason codes 198
RENAME (rename symbolic references)

parameter list 198
syntax 197

rename list
specifying 167

RENAME statement
example 95

renamed-symbol cross reference table
interpreting 297

Renaming 55
renaming existing to substitute DLL names 166
renaming external symbols

syntax 94
renaming program modules and aliases 6
renaming symbols 94
REPLACE statement

example 63, 64, 96
linkage editor differences 265, 266
purpose 62, 63
syntax 95

replacing external symbols 95, 155
replacing IDR data 60
replacing sections

description 60, 62
linkage editor differences 265
with ALTERW function call 155
with REPLACE statement 95

RES option
purpose 119
syntax 119

RESETW (reset workmod function)
parameter list 200
return and reason codes 200
syntax 199

residence mode
See RMODE

resolving external references
description 21, 50—54
with BINDW function call 160
with LIBRARY statement 85

restricted no-call option
See also automatic library call
definition 53
SETL function 205
specifying 85
with LIBRARY statement 53

restriction
executing program objects in OpenEdition file 20

retrieving
ESD entries 172
section names 176
sections 170
text 170
workmod items 170

return codes
batch loader 288
binder 279
IEWBIND macro 142
IEWBLDGO 287
IEWBLINK 279
IEWTPORT (transport utility) 332
linkage editor 288
program management 279

REUS option
linkage editor differences 267
purpose 120
syntax 120

reusability attribute
definition 468
description 120
specifying 120

RLD (relocation dictionary)
description 16

RLD object module record 345
RLD record

format 357
RMODE (residence mode)

default value 24
definition 468
description 22
for overlay programs 25, 322
hierarchy 24
linkage editor differences 261
specifying 87, 121
valid with RMODE 24
values 23

RMODE option
purpose 121
syntax 121

root segment
definition 468
description 305

480 DFSMS/MVS V1R4 Program Management

S
save exit routine 219
SAVEW (save workmod function)

parameter list 205
return and reason codes 203
syntax 201

saving program modules 201
scatter load option 122
scatter table

format 355
scatter/translation record

format 355
SCTR option

purpose 122
syntax 122

secondary input
INCLUDE type 46

section
definition 129
inserting 186
names 129, 149
ordering 191
retrieving 170

names 176
section definition 15
sections 10
SEGLD macro

in overlay programs 327
segment

See overlay segment
SEGWT macro

in overlay programs 327
serially reusable attribute

definition 468
description 120
specifying 120

service
IEWBFDA 455

service aids 7
SETCODE statement

example 98
precedence 97
purpose 97
syntax 97

SETL (set library function)
parameter list 207
return and reason codes 207
syntax 205

SETO (set option function)
parameter list 210
return and reason codes 209
syntax 208

SETOPT statement
purpose 98
syntax 98

SETSSI statement
precedence 99
purpose 98
syntax 98

setting installation defaults 102
setting user exit return codes 219, 220
setting, hi-order bit 114
side files

saving 202
SIZE option

batch loader 271
purpose 122
syntax 122
values for linkage editor 267

SNAME option
purpose 140
specifying 208, 212

source module
description 9

specifying aliases and alternate entry points 71, 150
specifying AMODE

description 23
with ADDA function call 151
with AMODE option 108
with MODE statement 87

specifying binder
fill character 114

specifying binder input
in batch mode 43—55

specifying binder level 109
specifying binder options

from a program 40
in a data set 117
on EXEC statement PARM field 30, 101—126
with the API 137

using SETO function 208
using STARTD function 210

specifying binder output
content 115
cross-reference table 126
lines per page 115
message display 117
module map 116

specifying call libraries 52, 85, 160
specifying control statements 45
specifying entry points 75, 112
specifying exit 113
specifying high order bit setting 114
specifying IDR data 78
specifying linkage editor options 266
specifying load options 113
specifying page-map options 113
specifying reusability attributes 120, 267
specifying RMODE 23, 87, 121
specifying substitute member names 197

 Index 481

specifying upper or mixed case 109
specifying virtual storage size

batch loader 271
binder 31, 122, 125
linkage editor 268
with REGION parameter 31
with SIZE option 122
with WKSPACE option 125

SSI (system status index)
assigning 98, 123
definition 468
description 98
updating 7

SSI option
purpose 123
syntax 123

STARTD (start dialog function)
parameter list 216
return and reason codes 215
syntax 210

STARTD options
specifying 212

starting binder dialog 210
STARTS (start segment function)

parameter list 217
return and reason codes 217
syntax 216

storage requirements
batch loader 271
binder 31
linkage editor 268

STORENX option
purpose 123
syntax 123

storing data
with PUTD function call 192

storing not-executable modules 123
suppressing external reference resolution 54, 85, 108
SYM object module record 342
symbol (SYM) record

format 353
SYSDEFSD DD statement

coding in batch 35
description 35

SYSLIB DD statement
coding in batch 33
description 33
purpose 52
under TSO 41

SYSLIN DD statement
cataloged procedure 37
coding in batch 32
description 32
linkage editor and batch loader requirements 262
primary input 44

SYSLMOD
set OpenEdition file attributes 118

SYSLMOD DD statement
block size 111
cataloged procedure 38
coding in batch 34
description 34
under TSO 41

SYSLOUT DD statement
batch loader requirement 262
coding in batch 33
description 33
suppressing output 119

SYSPRINT DD statement
cataloged procedure 37
coding for IEWTPORT 330
coding in batch 33
description 33
linkage editor requirement 262

SYSTERM DD statement
coding in batch 35
coding TERM option 124
description 35

SYSUT1 DD statement
coding for IEWTPORT 330
coding for linkage editor 262
ignored by the binder 30

SYSUT2 DD statement
coding for IEWTPORT 330

T
TEMPNAME 266
TEMPNAMn 89
temporary data set

specifying in JCL 45
TERM option

purpose 124
syntax 124

TERMINAL
enable file 212

terminating binder dialog 168
TEST option

purpose 124
syntax 124

text
description 16
object module record format 344
retrieving 170

time sharing option
See TSO

transform table in COBOL overlay program 312
translation table

format 355
transport utility

See IEWTPORT

482 DFSMS/MVS V1R4 Program Management

transportable file format 333—340
alias data type 336
attributes data type 337
body 336
descriptor 336
header 334
item data type 339
trailer 335

transportable program
creating 329
definition 468

true alias
definition 468
specifying AMODE 87

TSO (time sharing option)
enabling for TEST command 124
INCLUDE statement 83
LINK command 41
LOADGO command 41

U
UPCASE option

syntax 124
updating SSI data 7
upper case 109
user exit, specifying 113
user exits 218
using IEWTPORT 329—332

examples 331
utilities (program management utilities) 6
utility

IEWTPORT (transport utility) 6

V
v-con

See adcon
varying character strings 149
version

specifying in API 130
specifying in binder 148
summary 130

W
weak external reference

deleting 63
unresolved 50

WKSPACE option
purpose 125
syntax 125

workmod
binding 159
creating 163
definition 468

workmod (continued)
deleting 164
description 128
resetting 199

workmod element
definition 468
description 128

workmod item
definition 468
retrieving 170

workmod token
definition 468
description 128
obtaining 163

workspace
restricting binder 212

writing
data, using PUTD 192

writing binder user exit routines 211, 218

X
XCAL option

creating overlay programs 322
purpose 126
syntax 126

XCTL macro
invoking

batch loader 263
binder 39
linkage editor 263

XREF option
linkage editor differences 267
purpose 126
syntax 126

 Index 483

Communicating Your Comments to IBM

DFSMS/MVS Version 1 Release 4
Program Management

Publication No. SC26-4916-03

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

 – United States: 1-800-426-6209
– Other countries: (+1)+408+256-7896

� If you prefer to send comments electronically, use this network ID:

– IBMLink from U.S. and IBM Network: STARPUBS at SJEVM5
– IBMLink from Canada: STARPUBS at TORIBM
– IBM Mail Exchange: USIB3VVD at IBMMAIL

 – Internet: starpubs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

DFSMS/MVS Version 1 Release 4
Program Management

Publication No. SC26-4916-03

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC26-4916-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
M86/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

Fold and Tape Please do not staple Fold and Tape

SC26-4916-03

IBM

File Number: S390-20
Program Number: 5695-DF1
 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-4916-ð3

Spine information:

IBM DFSMS/MVS Version 1 Release 4 Program Management

